
Chapter 3

Origins of Security API Attacks

This chapter summarises the history of discovery and publication of API attacks

on HSMs. It explains what an API attack is, how the attacks were discovered, and

shows the core ideas behind them. The attacks described have been built up into

the toolkit described in section 7.2. For simplicity, the story of their discovery is

told only in the context of financial security systems, though the same techniques

have been successfully applied to a range of other non-financial applications.

3.1 Early Security API Failures

Anderson was one of the first to introduce hardware security module failures to

the academic community. After spending a number of years working in financial

security, in 1992 he became involved in a class action law suit in the UK, pertaining

to so-called ‘phantom withdrawals’: unexplained losses of money from customer

accounts. Anderson condensed much of his understanding into an academic paper

“Why Cryptosystems Fail” [3]. This paper focussed on the known failure modes

of ATM banking systems, including several procedural and technical failures in the

use of security modules. A cryptographic binding error was typical of the failures

Anderson described:

“One large UK bank even wrote the encrypted PIN to the card strip. It took the crim-

inal fraternity fifteen years to figure out that you could change the account number

on your own card’s magnetic strip to that of your target, and then use it with your

own PIN to loot his account.”

However, the paper stopped short of including a description of what we would nowa-

days call an API attack. Several years later, Anderson described in “Low Cost At-

tacks on Tamper Resistant Devices” [6], an incident where a dangerous transaction

was deliberately added to a security module API.

Many banks at the time calculated customer PINs by encrypting the customer’s

Primary Account Number (PAN) with a secret key, then converting the resulting

21

ciphertext into a four digit number. If customers wished to change their PIN, the

bank stored an offset representing the difference between the customer’s new and

old PIN in their database. For example, if the customer’s issued PIN was 3566 and

she changed it to 3690, the offset 0134 would be stored.

One bank wished to restructure their customer PANs, maybe to make space for

future expansion. Unfortunately, changing the PAN would change the original PIN

issued to customers, and the bank did not wish to force all its customers to accept

new PINs. The bank commissioned a security module transaction that would adjust

all the stored offsets so that a customer’s account number could change, yet each

could retain the PIN he or she had chosen. The manufacturer produced a transaction

of the following form, warning that it was dangerous and should only be used to

perform a batch conversion, then removed from the API.

Host -> HSM : old_PAN , new_PAN , offset

HSM -> Host : new_offset

Somehow the warnings were forgotten, and the transaction was never removed from

the API. A year or so later, a programmer spotted how this transaction might be

abused. If he fed in his own account number as the new_PAN, the command would

duly calculate and return the difference between any customer’s issued PIN and his

own original PIN! In the published paper, Anderson characterised this as a protocol

failure.

In 2000 Anderson gave a talk at the Cambridge Security Protocols workshop, titled

“The Correctness of Crypto Transaction Sets” [1]. He re-iterated a description of

the above failure, which pertained to a single bad transaction, but this time he asked

the question: “So how can you be sure that there isn’t some chain of 17 transactions

which will leak a clear key?”.

The idea of an API attack was born as an unexpected sequence of transactions

which would trick a security module into revealing a secret in a way the

designers couldn’t possibly have intended. Shortly afterwards Anderson took

a second look at the API of the ‘VISA Security Module’ and came up with an attack.

3.2 A Second Look at the Visa Security Module

The ‘VISA Security Module’ (VSM) was one of the earliest financial HSM designs,

which VISA commissioned to improve PIN processing security, so that member

banks might be encouraged to permit processing of each other’s customer PINs.

It was a large metal box that talked to a bank mainframe via an RS232 or IBM

channel interface. No pictures of the VSM are currently in the public domain, but

the RG7000 pictured in figure 3.1 is very similar.

22

Figure 3.1: The RG7000 Hardware Security Module

3.2.1 XOR to Null Key Attack

Until recently ATMs had to support offline operation, so when banks set up new

ATMs, they needed a way to securely transfer the PIN derivation keys used to

calculate customer PINs from PANs. The VSM used a system of dual control to

achieve this. The idea was that two service engineers would each take one component

of a master key to the ATM, and enter it in. Once both components were entered,

the ATM could combine the components using the XOR function. The resulting

‘Terminal Master Key’ (TMK) would be shared with the VSM and could be used

for communicating all the other keys. A transaction was first run twice at the VSM

to generate the components:

HSM -> Printer : TMK1 (Generate Component)

HSM -> Host : { TMK1 }Km

HSM -> Printer : TMK2 (Generate Component)

HSM -> Host : { TMK2 }Km

The VSM only had very limited internal storage, yet there might be many different

ATMs it needed to hold keys for. The paradigm of working with encrypted keys

evolved: instead of keeping keys internally, the VSM only held a few master keys,

and other keys were passed in as arguments to each transaction encrypted under one

of these master keys. So, in response to the above transaction, the VSM returned an

encrypted copy of the component to the host computer, encrypted under its master

key, Km (and of course printed a clear copy onto a special sealed mailer for the

23

service engineer). In order for the VSM to recreate the same key as the ATM, it had

a command to XOR two encrypted components together, as shown in figure 3.2.

Host -> HSM : { TMK1 }Km , { TMK2 }Km (Combine Components)

HSM -> Host : { TMK1 ⊕ TMK2 }Km

The attack

Host -> HSM : { TMK1 }Km , { TMK1 }Km (Combine Components)

HSM -> Host : { TMK1 ⊕ TMK1 }Km

TMK1 ⊕ TMK 1 = 0

Figure 3.2: The XOR to Null Key Attack

Anderson made the following observation: if the same component is fed in twice,

then because the components are combined with XOR, a key of binary zeroes will

result. This known key could then be used to export the PIN derivation key in

the clear. Anderson described a slightly more complex completion of the attack

in [1] than was strictly necessary, but the core idea was the same. This attack was

the first true Security API attack, as (unlike the offset calculation attack) it was

unintentional, and was composed of more than one transaction. In this thesis, it is

named the “XOR to Null Key Attack”, and is described fully in section 7.3.1.

3.2.2 Type System Attack

In late 2000, working with Anderson, the author examined the transaction set and

found that there were more vulnerabilities: the VSM also had problems with keeping

keys used for different purposes separate. The Terminal Master Keys used to send

other keys to ATMs, and the PIN Derivation Keys used to calculate customer PINs

were stored by the VSM encrypted with the same master key – Km. Two example

transactions using these keys are shown below. PDK1 is a PIN derivation key, and

TMK1 is a terminal master key.

The first transaction encrypts a customer PAN with the PIN derivation key, but

sends the PIN to a secure printer (for subsequent mailing to the customer); the

second transaction encrypts the PIN derivation key under a TMK belonging to an

ATM. Though they perform quite different functions which are not connected, their

inputs were sent in under the same master key.

Host -> HSM : PAN , { PDK1 }Km (Print PIN Mailer)

HSM -> Printer : { PAN }PDK1

Host -> HSM : { PDK1 }Km , { TMK1 }Km (Send PDK to ATM)

HSM -> Host : { PDK1 }TMK1

24

However, the designers did recognise a clear difference between ‘Terminal Commu-

nications’ keys (TCs) and PIN derivation keys or TMKs. TC1 is a terminal commu-

nications key, and Km2 is a second master key that was used to encrypt keys of this

type, keeping them separate from the rest. They were kept separate because termi-

nal communications keys were not considered to be as valuable as PIN derivation

keys – and there needed to be a transaction to enter a chosen TC key.

Host -> HSM : TC1 (Enter clear TC Key)

HSM -> Host : { TC1 }Km2

TCs needed to be communicated to ATMs in the same way as PIN derivation keys,

so there was a command that worked in a very similar way, encrypting the chosen

TC under a chosen TMK corresponding to a particular ATM.

Host -> HSM : { TC1 }Km2 , { TMK1 }Km (Send TC Key to ATM)

HSM -> Host : { TC1 }TMK1

However, the author spotted that when these two transactions were used together,

given the lack of differentiation between PIN derivation keys and TMKs, there was

a simple attack. It was to enter in a customer PAN, claiming it to be a TC key, and

substitute a PIN derivation key for a TMK in the “send to ATM” transaction.

The Attack

Host -> HSM : PAN (Enter clear TC Key)

HSM -> Host : { PAN }Km2

Host -> HSM : { PAN }Km2 , { PDK1 }Km (Send TC Key to ATM)

HSM -> Host : { PAN }PDK1

Of course, { PAN }PDK1 is simply the customer’s PIN. The full details of this attack

are in section 7.3.2. Just like Anderson’s ‘XOR to Null Key Attack’, this vulnera-

bility had gone unnoticed for over a decade. How many more attacks were waiting

to be found?

25

3.3 Development of the Attack Toolkit

3.3.1 Meet-in-the-Middle Attack

The author began a systematic exploration of the VSM API, and also examined the

financial API for IBM’s 4758 HSM, called the Common Cryptographic Architecture

(CCA). The CCA manual was available on the web [26], and when the author studied

it, a number of new attack techniques rapidly emerged.

The author observed that both the CCA and the VSM had transactions to generate

‘check values’ for keys – a number calculated by encrypting a fixed string under the

key. When keys were exchanged between financial institutions in components, these

check values were used to ensure that no typing mistakes had been made during key

entry. The input to the check value encryption was usually a block of binary zeroes.

Host -> HSM : { TMK1 }Km (Generate Check Value)

HSM -> Host : { 0000000000000000 }TMK1

Another intriguing feature was that both HSMs stored their keys on the host com-

puter, and only held master keys internally. Due to this external storage, a user

could generate an almost unlimited number of conventional keys of a particular

type. It was well known that the check values could be used as known plaintext for

a brute force search to find a key, but a full search of the 56-bit DES key space was

considered prohibitively expensive. But what if the attacker did not need to search

for a particular key, but if any one of a large set would suffice? The attack went as

follows:

1. Generate a large number of terminal master keys, and collect the check value

of each.

2. Store all the check values in a hash table

3. Perform a brute force search, by guessing a key and encrypting the fixed test

pattern with it

4. Compare the resulting check value against all the stored check values by look-

ing it up in the hash table (an O(1) operation).

With a 256 keyspace, and 216 target keys, a target key should be hit by luck with

roughly 256/216 = 240 effort. The author named the attack the ‘meet-in-the-middle’

attack with reference to how the effort spent by the HSM generating keys and the

effort spent by the brute force search checking keys meet-in-the-middle. The time-

memory trade-off has of course been described several decades ago, for example

in the attack against 2DES proposed by Diffie and Hellman [19], neither is the

26

idea of parallel search for multiple keys new (Desmedt describes parallel key search

machine in [18]). However, it seems the author was the first to apply the technique

to HSMs. It was extremely successful, and compromised almost every HSM analysed

– sections 7.2.2, 7.3.3 and 7.3.7 have more details.

3.3.2 3DES Key Binding Attack

In the nineties, financial API manufacturers began to upgrade their APIs to use

triple-DES (3DES) as advancing computing power undermined the security of single

DES. IBM’s CCA supported two-key 3DES keys, but stored each half separately,

encrypted under the master key in ECB mode. A different variant of the master key

was used for the left and right halves – achieved by XORing constants representing

the types left and right with the master key Km.

Host -> HSM : { KL }Km⊕left , { KR }Km⊕right , data (Encrypt)

HSM -> Host : { data }KL|KR

The CCA also had support for single DES in a special legacy mode: a ‘replicate’

3DES key could be generated, with both halves the same. 3DES is encryption with

K1, followed by decryption with K2, then encryption with K1, so if K1 = K2 then

E(K1, D(K1, E(K1, data))) = E(K1, data), and a replicate key performs exactly

as a single DES key.

Host -> HSM : (Generate Replicate)

HSM -> Host : { X }Km⊕left , { X }Km⊕right

The flaw was that the two halves of 3DES keys were not bound together with each

other properly, only separated into left and right. There was a clear CRC of the

key token, but this was easily circumvented. A large set of replicate keys could be

generated and cracked using the meet-in-the-middle attack, then a known 3DES key

could be made by swapping the halves of two replicate keys. This known key could

then be used to export other more valuable keys.

Host -> HSM : (Generate Replicate)

HSM -> Host : { X }Km⊕left , { X }Km⊕right

Host -> HSM : (Generate Replicate)

HSM -> Host : { Y }Km⊕left , { Y }Km⊕right

Known key : { X }Km⊕left , { Y }Km⊕right

27

This key binding attack effectively reduced the CCA’s 3DES down to only twice

as good as single DES, which was by then widely considered insufficient. Several

attacks exploiting the key binding flaw are described in sections 7.3.6 and 7.3.7.

The attack techniques and implementations in the last few sections were published

at the “Cryptographic Hardware and Embedded Systems” workshop in Paris in

2001 [8], and later in IEEE Computer [9]. The CHES paper inspired Clulow to

examine the PIN verification functionality of financial APIs more closely, and he

discovered half a dozen significant new attacks, which he detailed in his MSc thesis

“The Design and Analysis of Cryptographic APIs for Security Devices” [15].

3.3.3 Decimalisation Table Attack

In late 2002 the author and Clulow independently made the next significant ad-

vance in attack technology – the discovery of information leakage attacks. Clulow

had discovered the problems an entire year earlier, but was unable to speak pub-

licly about them until late 2002, when he gave seminars at RSA Europe, and the

University of Cambridge. Early in the next year the author published details of the

‘decimalisation table attack’, and Clulow published his M.Sc. thesis.

The decimalisation table attack (explained fully in section 7.3.10) exploited flexibil-

ity in IBM’s method for calculating customer PINs from PANs. Once the PAN was

encrypted with a PIN derivation key, it still remained to convert the 64-bit binary

block into a four digit PIN. A natural representation of the block to the programmers

was hexadecimal, but this would have been confusing for customers, so IBM chose

take the hexadecimal output, truncate it to the first four digits, then decimalise

these using a lookup table, or ‘decimalisation table’, as shown in figure 3.3.

Account Number 4556 2385 7753 2239

Encrypted Accno 3F7C 2201 00CA 8AB3

Shortened Enc Accno 3F7C

0123456789ABCDEF

0123456789012345

Decimalised PIN 3572

Figure 3.3: IBM 3624-Offset PIN Generation Method

Originally the decimalisation table was a fixed input – integrated into the PIN

generation and verification commands, but somehow it became parameterised, and

by the time the VSM and CCA APIs were implemented, the decimalisation table was

28

an input that could be specified by the user. If a normal PIN verification command

failed, it discounted a single possibility – the incorrect guess at the PIN. However,

if the decimalisation table was modified, much more information could be learnt.

For example, if the user entered a trial PIN of 0000, and a decimalisation table

of all zeroes, with a single 1 in the 7 position – 0000000100000000 – then if the

verification succeeded the user could deduce that the PIN did not contain the digit

7. Zielinski optimised the author’s original algorithm, revealing that PINs could be

determined with an average of 15 guesses [10].

3.4 Attacks on Modern APIs

Many of today’s Security APIs have been discovered to be vulnerable to the same

or similar techniques as those described in this chapter. However, there are some

more modern API designs which bear less resemblance to those used in financial

security applications. In particular, the main issues relating to the security of PKI

hardware security modules are authorisation and trusted path. These issues have

only very recently been explored, and there have been no concrete attacks published.

Chapter 8 includes a discussion of the issues of authorisation and trusted path, and

describes several hypothetical attacks.

Finally, if the reader is already thoroughly familiar with the attacks described in

this chapter, attention should be drawn to several brand new Security API attacks

which have been outlined in section 7.3.12, which were developed by the author as

a result of analysis of nCipher’s payShield API.

29

Chapter 7

Analysis of Security APIs

7.1 Abstractions of Security APIs

At the core of any analysis technique is a condensed and efficient representation of

the design that is to be reasoned about. It must be easy for the analyst to visualise

and manipulate it in his head. This section describes several useful abstractions of

Security APIs, each of which captures a slightly different aspect of API design.

7.1.1 Describing API Commands with Protocol Notation

It is easy to describe API commands using the conventional protocol notation that

has been popular since the time of the BAN logic paper [11]. The notation used here

is introduced with the oft-quoted Needham-Schroeder Public Key Protocol. It is a

slightly simplified curly bracket notation, which does not bother with subscripts.

A -> B : { Na , A }Kb A −→ B : {NA, A}KB
B -> A : { Na , Nb }Ka B −→ A : {NA, NB}KA
A -> B : { Nb }Kb A −→ B : {NB}KB

In addition to understanding how to represent operations such as encryption and

pairing, fairly standard conventions are in use for putting semantics into the variable

names – Na is a nonce generated by A, Ka^-1 may represent the private key of A.

Similar conventions are required to concisely describe Security API commands.

KM or Km is the master key of the HSM. HSMs with multiple master keys have each

master key named after the type it represents. So

{ K1 }TC

78

Accepting a clear key value to become a ‘TC’ key

User -> HSM : K1

HSM -> User : { K1 }TC

Translating a key from encryption under key X to key Y

User -> HSM : { K1 }X , { X }KM , { Y }KM

HSM -> User : { K1 }Y

Adding together encrypted values

User -> HSM : { A }KM , { B }KM

HSM -> User : { A+B }KM

Verifying a password

User -> HSM : { GUESS }KM , { ANS }KM

HSM -> User : if GUESS=ANS then YES else NO

Figure 7.1: Example commands in protocol notation

represents a key K1, encrypted with the master key used for storing ‘terminal com-

munications’ keys. Therefore TC itself is not the terminal communications key – K1

is. This distinction needs to be held in mind when multiple layers of key are in use.

Transactions are represented by two lines of protocol, one describing arguments

send, the other describing the result. A few examples are shown in figure 7.1.

The protocol representation may also borrow from other fields of mathematics and

include pseudocode, as seen in last two examples in figure 7.1. The semantics of the

command are hopefully still clear.

However, protocol notation gets into trouble because it represents the HSM parsing

and decryption of the inputs implicitly. Many weaknesses in transaction sets arise

because of interactions during decryption, and poor handling of error states. In

these situations, using extra pseudocode in protocol notation becomes cumbersome

once too many conditional actions have to be represented. The protocol lines in

figure 7.2 show two common commands from the IBM 4758 CCA transaction set.

The first describes the final step of construction of a key encryption key (KEK),

where the user provides the third of three component parts, and it is XORed together

with the previous two. The key used to encrypt the first two components is the CCA

master key, XORed with a control vector imp/kp. The ‘/’ symbol in the control

vector represents the use of XOR (shown elsewhere as ‘⊕’) specifically to combine

control vectors and keys together; the semantics identical to ‘⊕’, but the visual cue

79

First Command: Key Part Import

User -> HSM : KP3 , { KP1 ⊕ KP2 }KM/imp/kp , imp/kp

HSM -> User : { KP1 ⊕ KP2 ⊕ KP3 }KM/imp

KEK1 = KP1 ⊕ KP2 ⊕ KP3

KEK2 = KP1 ⊕ KP2 ⊕ KP3 ⊕ (pmk ⊕ data)

Second Command: Key Import (in normal operation)

User -> HSM : { PMK1 }KEK1/pmk , { KEK1 }KM/imp , pmk

HSM -> User : { PMK1 }KM/pmk

Second Command: Key Import (when the attack is performed)

User -> HSM : { PMK1 }KEK1/pmk , { KEK2 }KM/imp , data

HSM -> User : { PMK1 }KM/data

Explanation of actions performed

1. HSM decrypts { KEK2 }KM/imp with master key and implicitly claimed type imp

2. HSM decrypts { PMK1 }KEK1/pmk using KEK2 and explicitly claimed type data

3. HSM encrypts PMK1 with master key and explicitly claimed type data

Figure 7.2: The CCA typecasting attack represented in protocol notation

can help the reader identify the control vector. The control vector imp/kp represents

the fact that it is a key part (kp), and that the finished key is to be of type importer

(imp). On completion of the final command the combined key is returned in a ready

to use form – encrypted under KM, with control vector imp.

The protocol notation in figure 7.2 appears to be performing well, but while it does

describe a normal input and output of the transaction, it doesn’t actually capture

the semantics of what happens. Firstly, a fourth input is implicitly present – control

information to let the HSM know that this is the last component, and it is to proceed

with completing the key. If this control information were not supplied, the command

would respond with { KP1 ⊕ KP2 ⊕ KP3 }KM/imp/kp, which would not be usable.

Secondly, the third input is an explicit naming of the control vector associated with

the encrypted key part. If we assume that the HSM can explicitly identify the input

data type (as is often the case in security protocols), we do not need this input,

but we lose the semantics of the command, and we lose the opportunity to discover

attacks which hinge on this.

When an operational key is imported under a KEK, its key type has to be explicitly

stated as before. However, this time, the explicitly stated control vector can interact

with the value of the KEK, which the attacker may have some degree of control over.

If the attacker can formulate KEK2, then PMK1 will be correctly decrypted and re-

encrypted under the master key, except with a new type associated. The attack

80

works because the modification to the claimed KEK for import cancels out the error

which would have otherwise occurred from wrongly specifying the type of the key

to be imported as data. This attack is described in section 7.3.4. The important

issue here is not to understand the attack, but to realise that the protocol notation

not only fails to convey certain parts of transaction semantics, but cannot represent

the semantics even when the author deliberately intends it to.

Representing decryption implicitly by matching keys and then stripping away en-

cryption braces is not effective for describing many problems with APIs.

In conclusion, protocol notation is useful for two things:

1. explaining what a command achieves, and what it is supposed to do but, not

how it works, and

2. showing the inputs and outputs of a command in a specific instance.

Discussion of the limitations of the notation is not a prerequisite to understanding

the attacks described in this thesis, but is intended to serve as a warning to take care

about notation for transaction sets when describing them to others. In section 7.4.4,

a tool developed by the author for API analysis is described: its notation is suffi-

ciently explicit to avoid these problems. However, even that notation is somewhat

cumbersome when representing transactions with lots of conditional processing.

7.1.2 Key Typing Systems

Assigning and binding type information to keys is necessary for fine-grained access

control to the key material and transactions. Designers must think carefully about

key types and permitted usage when turning a high-level policy into a concrete API

design – it is useful to envisage these restrictions as a type system.

ZCMKTMK/PIN WK

TC

LPZCMK_I TMK_I WK_I

TC_I(CLEAR)(RAND)

Figure 7.3: Example type system from the VSM

Many transactions have the same core functionality, and without key typing an

attacker may be able to abuse a transaction he has permission to use, in order to

81

achieve the same functionality as one that is denied to him by the access control.

For example, deriving a PIN for an account with a financial security API is simply

encryption with DES, just as you would do with a data key for communications

security. Likewise, calculation of a MAC can be equivalent to CBC encryption, with

all but the last block discarded. A well-designed type system can prevent the abuse

of the similarities between transactions.

Fred
SRAND

TEM_I
(BLOB1)

YMAC

XMAC FEK

CLEAR

TK_IRSA-IMP
PRIV

FAK

RSA-IMP

RAND
EKEY
PRIV

RSA_IMP_I RSA_IMP_I

FAK FEK

CMAC_I TEM_I
(BLOB2)

Figure 7.4: Example type system from real world application

Figures 7.3 and 7.4 show examples of a type system represented graphically. The

transactions are shown as arrows linking two types together, and can represent only

the major flow of information in the transaction. Consider figure 7.3. The labelled

boxes represent the Security API’s types. For a typical monotonic API a box will

contain keys encrypted under the key named in the box label. For instance, a

working key W1 is considered to be of type WK, and will be presented to the box in

encrypted forms as { W1 }WK. The main point that must be grasped is that WK refers

both to the type Working Key, and to the master key under which working keys are

themselves encrypted.

Some labels have the suffix ‘_I’ appended. This stands for the type of data encrypted

under an instance of a particular type. Take for example WK_I. This type represents

data that is encrypted under a particular working key e.g. { DATA }W1 where W1

is the particular working key, and is presented to the HSM in the form { W1 }WK.

The box marked WK_I thus represents not really one type, but in fact a whole set of

types.

82

Certain box names have specific meanings in all the diagrams: CLEAR represents

unprotected, unencrypted clear data or key material that can be chosen by the user,

RAND represents a random number generated by the HSM which is unknown to the

user, SRAND represents an unknown but reproducible random number – such as one

derived from encrypting some data of the user’s choice.

Just like protocol notation, the graphic type system notation is not a formal one,

but it can capture a lot of the semantics of a type system in quite a small space.

IBM’s Common Cryptographic Architecture (CCA) deals with key typing in an

interesting way. The CCA name for the type information of a key is a control

vector. Rather than using completely disjoint master keys for types, the system

of control vectors binds type information to encrypted keys by XORing the control

vector with a single master key used to encrypt, and appending an unprotected copy

(the claimed type) for reference.

EKm⊕CV (KEY) , CV

This control vector is simply a bit-pattern chosen to denote a particular type. If a

naive attacker were to change the clear copy of the control vector (i.e. the claimed

key type), when the key is used, the HSM’s decryption operation would simply

produce garbage.

DKm⊕CV MOD(EKm⊕CV (KEY)) 6= KEY

This mechanism is sometimes called key diversification, or key variants ; IBM holds

a number of patents in this area. The implementation details are in “Key Handling

with Control Vectors” [33], and “A Key Management Scheme Based on Control

Vectors” [34].

7.1.3 Key Hierarchies

Storage of large numbers of keys becomes necessary when protecting data from

multiple sources, or originating from multiple users with differing levels of trust,

as it limits damage if one key is compromised. Keys are commonly stored in a

hierarchical structure, giving the fundamental advantage of efficient key sharing:

access can be granted to an entire key set by granting access to the key at the next

level up the hierarchy, under which the set is stored.

Confusion arises when the hierarchy serves more than one distinct role. Some HSMs

infer the type of a key from its position in the hierarchy, or use hierarchies simply

to increase their effective storage capacity when they can only retain a top-level key

within their tamper-resistant enclosure.

83

Figure 7.5 shows a common key management hierarchy with three layers of keys.

The top layer contains ‘master keys’ which are never revealed outside the HSM, the

middle layer transport keys or key-encrypting-keys (KEKs) to allow sharing between

processors, and the bottom layer working keys and session keys – together known as

operational keys, The scope of some HSMs extends to an even lower layer, containing

data encrypted with the operational keys.

KEKs

User Data

Outgoing Working Keys

Master Key

KEK MK DATA MK
Master
Keys

Operational
Keys

Transport
Keys

User
Data

Shared Data

Incoming

Shared Data

Rectangles
represent TYPES

Ovals
represent KEYS

Figure 7.5: An example key hierarchy

7.1.4 Monotonicity and Security APIs

Many Security APIs contain very little internal state. The state of the system as a

whole is usually stored as a set of encrypted terms, any of which can be presented

as inputs to the commands. Once a new output has been produced by executing a

command on a particular combination of inputs, this output can be added to the

set of all terms known (referred to as the Knowledge Set of the user). If this set

increases in size monotonically, it will always be possible to present a set of inputs

again and retrieve the same output at a later time, and the ability to use a piece of

knowledge can never be lost.

When a model of a Security API can demonstrate this property, certain sorts of

analysis become much easier, as the problem becomes one of reachability – whether

a particular piece of knowledge be obtained. The data structures for storing mono-

tonically increasing knowledge can be much simpler and more condensed.

In real life, some APIs do come very close to perfect monotonicity. The Visa Security

Module and similar designs have only the master key for the device as internal state.

Monotonicity is broken during a master key update operation, but this is a privileged

84

command not available within the threat model of a realistic attacker, so as far as

the attacker is concerned, the API is still monotonic.

APIs have to break this property to implement certain useful functionality such as

counters. Counters are very useful to allow HSMs to dispense limited amounts of

credit tokens (e.g. prepayment electricity meters, mobile phone top-up codes), and

to limit the number of signatures which can be performed with a key. An API simply

cannot be monotonic if counters are used, as they specifically break the property

that a command execution can be repeated at any time.

One API – that of the Prism TSM200 – has a fundamentally non-monotonic design.

Keys are stored in one hundred different internal slots, and once loaded are accessed

by slot identifier rather than by presenting an encrypted input. The keys are ar-

ranged in a hierarchy, each key recording the identifier of its parent. Actions that

change the contents of one slot trigger a cascading erasure of keys in slots which

record the changed slot as their parent. Thus there is no simple guarantee that a

key once available will remain available for use.

85

7.2 The Attacker’s Toolkit

This section discusses the vulnerabilities found in Security APIs analysed during

the course of the author’s research. Some of the vulnerabilities are easily turned

into attack implementations, whilst others are building blocks, which must be used

in conjunction with other weaknesses to crystallise an attack. Section 7.3 describes

attacks constructed from applications of these techniques.

7.2.1 Unauthorised Type-casting

Commonality between transactions makes the integrity of the type system almost

as important as the access controls over the transactions themselves. Once the type

constraints of the transaction set are broken, abuse is easy (e.g. if some high security

key encrypting key (KEK) could be retyped as a data key, keys protected with it

could be exported in the clear using a standard data deciphering transaction).

Certain type casts are only ‘unauthorised’ in so far as that the designers never

intended them to be possible. In IBM’s CCA, it is difficult to tell whether a given

opportunity to type cast is a bug or a feature! IBM in fact describes a method in the

appendix of the manual for their 4758 CCA [16] to convert between key types during

import, in order interoperate with earlier products which used a more primitive type

system. The manual does not mention how easily this feature could be abused. If

type casting is possible, it should also be possible to regulate it at all stages with

the access control functions.

The problem is made worse because HSMs which do not maintain internal state

about their key structure have difficulty deleting keys. Once an encrypted version

of a key has left the HSM it cannot prevent an attacker storing his own copy for

later reintroduction to the system. Thus, whenever this key undergoes an authorised

type cast, it remains a member of the old type as well as adopting the new type. A

key with membership of multiple types thus allows transplanting of parts of the old

hierarchy between old and new types. Deletion can only be effected by changing the

master keys at the top of the hierarchy, which is radical and costly.

7.2.2 The Meet-in-the-Middle Attack

The idea behind the meet-in-the-middle attack is to perform a brute force search of

a block cipher’s key space to find not a particular key, but any one of a large set of

keys. If you can encrypt some test pattern under a set of keys, and can check for a

match against any ciphertext in this set simultaneously (for instance using a hash

table), you have all you need. The maths is common sense: the more keys that you

attack in parallel, the shorter the average time it takes to discover one of them by

luck.

86

The technique is particularly powerful against security modules with monotonic

APIs. Users will typically be able to generate as many keys as they wish, and store

them locally on the hard drive. Once one of these keys has been discovered, it

can normally be selected as the key is used to protect the output of a command,

provided it is of the correct type. This is the price of using a type system to specify

permitted actions: if even just one key within a type is discovered, a catastrophic

failure can occur – select the cracked key, export the rest under it.

The attacker first generates a large number of keys. 216 (65536) is a sensible target:

somewhere between a minute’s and an hour’s work for the HSMs examined. The

same test vector must then be encrypted under each key, and the results recorded.

Each encryption in the brute force search is then compared against all versions of

the encrypted test pattern. Checking each key may now take slightly longer, but

there will be many fewer to check: it is much more efficient to perform a single

encryption and compare the result against many different possibilities than it is to

perform an encryption for each comparison.

In practical use, the power of the attack is limited by the time the attacker can

spend generating keys. It is reasonable to suppose that up to 20 bits of key space

could be eliminated with this method. Single DES fails catastrophically: its 56-bit

key space is reduced to 40 bits or less. A 240 search takes a few days on a home PC.

Attacks on a 64-bit key space could be brought within range of funded organisations.

The attack has been named a ‘meet-in-the-middle’ attack because the brute force

search machine and the HSM attack the key space from opposite sides, and the

effort expended by each meets somewhere in the middle.

Meet-in-the-Middle Maths

The average time between finding keys in a brute force search can be calculated

by simple division of the search space by the number of target keys. However, it

is more useful to consider the time to find the first key and this requires a slightly

more complex model of the system using a Poisson distribution. The probability

that the first r guesses to find a key will all fail is e−λr where λ is the probability

any given attempt matches (e.g. when trying to search for one of 16384 DES keys

λ will be: 214/256 = 2−42). An example calculation of the expected time to finding

the first key using a hardware meet-in-the-middle DES cracker is in [53].

7.2.3 Key Conjuring

Monotonic HSM designs which store encrypted keys on the host computer can be

vulnerable to unauthorised key generation. For DES keys, the principle is simple:

simply choose a random value and submit it as an encrypted key. The decrypted

result will also be random, with a 1 in 28 chance of having the correct parity. Some

87

early HSMs actually used this technique to generate keys (keys with bad parity were

automatically corrected). Most financial APIs now check parity but rarely enforce

it, merely raising a warning. In the worst case, the attacker need only make trial

encryptions with the keys, and observe whether key parity errors are raised. The

odds of 1 in 216 for 3DES keys are still quite feasible, and it is even easier if each

half can be tested individually (see the binding attack in section 7.2.5).

7.2.4 Related Key Attacks

Allowing related keys to exist within an HSM is dangerous, because it creates de-

pendency between keys. Two keys can be considered related if the bitwise difference

between them is known. Once the key set contains related keys, the security of

one key is dependent upon the security of all keys related to it. It is impossible to

audit for related keys without knowledge of what relationships might exist – and

this would only be known by the attacker. Thus, the deliberate release of one key

might inadvertently compromise another. Partial relationships between keys com-

plicate the situation further. Suppose two keys become known to share certain bits

in common: compromise of one key could make a brute force attack feasible against

the other. Related keys also endanger each other through increased susceptibility

of the related group to a brute force search (see the meet-in-the-middle attack in

section 7.2.2). Note that the concept of related keys can be extended past partial

relationships to purely statistical relationships. There is a danger during analysis

that an architectural weakness gets spotted, but only one concrete manifestation of

the unwanted relationship is removed, and the statistical relationship remains.

Keys with a chosen relationship can be even more dangerous because architectures

using key variants combine type information directly into the key bits. Ambiguity is

inevitable: the combination of one key and one type might result in exactly the same

final key as the combination of another key and type. Allowing a chosen difference

between keys can lead to opportunities to subvert the type information, which is

crucial to the security of the transaction set.

Although in most HSMs it is difficult to enter completely chosen keys (this usually

leads straight to a severe security failure), obtaining a set of unknown keys with a

chosen difference can be quite easy. Valuable keys (usually KEKs in the hierarchy

diagram) are often transferred in multiple parts, combined using XOR to form the

final key. After generation, the key parts would be given to separate couriers, and

then passed on separate data entry staff, so that a dual control policy could be

implemented: only collusion would reveal the value of the key. However, any key

part holder could modify his part at will, so it is easy to choose a relationship between

the actual value loaded, and the intended key value. The entry process could be

repeated twice to obtain a pair of related keys. The Prism TSM200 architecture

actually allowed a chosen value to be XORed with almost any key at any time.

88

7.2.5 Poor Key-half Binding

The adoption of 3DES as a replacement for DES has led to some unfortunate API

design decisions. As two-key 3DES key length is effectively 128 bits (112 bits of key

material, plus 16 parity bits), cryptographic keys do not fit within the 64-bit DES

block size. Manufacturers have thus come up with various different approaches to

storing these longer keys in encrypted form. However, when the association between

the halves of keys is not kept, the security of keys is crippled. A number of APIs allow

the attacker to manipulate the actual keys simply by manipulating their encrypted

versions in the desired manner. Known or chosen key halves can be substituted into

unknown keys, immediately halving the keyspace. The same unknown half could

be substituted into many different keys, creating a related key set, the dangers of

which are described in section 7.2.4.

3DES has an interesting deliberate feature that makes absence of key-half binding

even more dangerous. A 3DES encryption consists of a DES encryption using one

key, a decryption using a second key, and another encryption with the first key.

If both halves of the key are the same, the key behaves as a single length key.

(EK1(DK2(EK1(data))) = EK(data) when K = K1 = K2). Pure manipulation of

unknown key halves can yield a 3DES key which operates exactly as a single DES

key. Some 3DES keys are thus within range of a brute force cracking effort.

7.2.6 Differential Protocol Analysis

Transactions can be vulnerable even if they do not reveal a secret completely: partial

information about the value of a key or secret is often good enough to undermine

security. Differential Protocol Analysis, coined by Anderson and the author in [4],

is the method of attacking APIs by methodically varying input parameters, and

looking for differentials in output parameters which vary in a way dependent upon

the target secret. An individual command can be treated like a black box for the

purposes of differential analysis, though of course it may help the attacker to study

the internal workings of the command to choose an appropriate differential.

The first instances of differential attacks on Security APIs were only published during

early 2003; there are not enough examples available to reason about the general

case. The examples that have been discovered tend to exploit a trivial differential –

that between normal operation, and some error state. This is the case in Clulow’s

PAN modification attack [15]. However, the same weaknesses that leak information

through crude error responses, or via a single bit yes/no output from a verification

command for example, are at work in the outputs of other API commands.

The principle of differential protocol analysis is best illustrated through the example

of the decimalisation table attack on PIN generation in a financial security HSM. In

this section, the attack is described in a simplified way – full details are in section

7.3.10.

89

PIN numbers are often stored in encrypted form even at machines which have the

necessary key to derive the PIN from the account number of a customer. These

encrypted PINs are useful when giving PIN verification capability to a financial

institution who can be trusted with verifying PINs in general, but may not be trusted

enough to take a copy of the PIN derivation key itself, or when sending correct PINs

to a mailer printing site. The API thus has a command of the following form:

User -> HSM : PAN , { PMK }KM , dectab

HSM -> User : { PIN1 }LP

where PAN is the Primary Account Number of the customer, PMK is the PIN derivation

key (encrypted with the master key) and dectab is the decimalisation table used in

the derivation process. The PIN is returned encrypted with key LP – a key for local

PIN storage.

Section 7.3.10 describes an attack on a PIN verification command, which calculates

a customer PIN from a PAN using a specified decimalisation table, and then gives a

yes/no answer as to whether a guess matches it.This PIN verification command can

be used to learn information about the secret PIN. With an average of 5000 guesses,

the verification command will respond with a yes, and the PIN is discovered. How-

ever, the attack improves on this. It works by changing a digit in the decimalisation

table, and observing whether or not the PIN generation process interacts with the

specific digit in the table changed. If there is an interaction, the PIN verification

will fail instead of succeed, and from this fact, one of the digits composing the PIN

can be deduced. The attack can be thought of as improving the rate of information

leakage from the command from 1 combination to about 1000 combinations per

guess. However, when the attacker does not have access to enter chosen PINs, this

variant of the attack seems to be fixed. This is not the case, because the information

leakage can still manifest itself as a differential. Look now at the PIN generation

procedure in figure 7.6: only some of the digits in the decimalisation table will af-

fect the specific PIN generated for a particular account, as the result of encrypting

the PAN can only contain up to four different hexadecimal digits in the first four

characters.

Thus if the decimalisation table is modified from its correct value, as in transaction

B, if the modification affects the PIN generated, a differential will appear between

the values of the first and second encrypted PINs . This is a true differential attack

because neither run of the protocol reveals any information about the PIN in its

own right. This is unlike the decimalisation table attack upon the verification phase,

where both the normal and attack runs of the command each leak information.

The verification attack described in section 7.3.10 could be considered an instance of

a differential attack, but with a trivial differential. Many of the attacks discovered

on financial APIs by the author and Clulow exploit such trivial differentials, as

these seem to be comparatively easy to spot. However, when fixing the APIs to

90

(Transaction A) (Transaction B)

PAN 4556 2385 7753 2239 4556 2385 7753 2239

Raw PIN 3F7C 2201 00CA 8AB3 3F7C 2201 00CA 8AB3

Truncated PIN 3F7C 3F7C

0123456789ABCDEF 0123456789ABCDEF

0123456789012345 0120456789012345

Decimalised PIN 3572 0572

PIN Block 4F1A 32A0 174D EA68 C3AA 02D6 7A8F DE21

Figure 7.6: A differential in outputs of the Encrypted PIN Generate Command

prevent the attacks, all types of differential must considered, not just the trivial

cases. Furthermore, even when protocol output differentials are secured, there are

always the threats of timing, power or electromagnetic differential attacks on the

security module.

7.2.7 Timing Attacks

Timing attacks are an important element in the toolkit of a software only attacker, as

unlike power analysis or electromagnetic emissions attacks, they do not necessarily

require physical tampering with the host or access to the exterior of the HSM. With

sabotaged device drivers, it should be possible in many cases to perform timing

attacks from the host computer, and if the clock speed of the host processor is

substantially higher than that of the HSM, counting iterations of a tight loop of

code on the host should suffice for timing. Embedded processors inside HSMs run

at only several hundred megahertz at the most, so a host machine with a clock rate

of 1GHz or above should have no difficulty at all in measuring timing differences

between executions of HSM commands to instruction granularity. Many comparison

operations between long character strings are implemented using memcpy, or in a loop

that drops out as soon as the first discrepancy is discovered. This sort of timing

attack was used long ago to find partial matches against passwords in multi-user

operating systems. Naively implemented RSA operations also have data-dependent

timing characteristics.

91

7.2.8 Check Value Attacks

Nearly all HSM designs use some sort of check value to allow unique identification of

keys, establish that the correct one is in use, or that a key manually loaded has been

entered correctly. Older HSM designs revolved around symmetric cryptography, and

a natural way chosen to create a check value was to encrypt a known constant with

the key, and return part or all of the ciphertext as a check value. Any module

supporting this sort of check value comes immediately under attack if the known

plaintext encrypted under a key can be passed off as genuine data encrypted under

that key.

A variety of lengths of check value are in common use, the differences dictated by the

different understandings of the primary threat by the designers. Full-length check

values on single DES keys were rapidly seen as targets for brute force attacks, and

furthermore as at risk from dangerously interacting with the set of encrypted values

under that key. The Visa Security Module and its clones have shortened check val-

ues to six hex digits, in particular to avoid potential usage of the encrypted check

value as a known key, but some other designs do not bother to shorten the value.

Unfortunately some general-purpose APIs found themselves needing to support cal-

culation of a range of different types of check value, in order to perform checks on

the secure exchange of keys between that device and an older one. These APIs thus

had configurability of their calculation method. This is the worst case of all, as even

if a system only uses short check values, it may still be possible to calculate long

ones.

Check values do not just open up the risk of pure brute force attacks, they can also

enable the meet-in-the-middle attack on suitably sized key spaces, by providing a

test for a correct match; they can also undermine key binding – for example in the

Prism TSM200 where each half of the 3DES master key had a separate check value.

Modern APIs such as nCipher’s nCore API identify a key uniquely by hashing it

along with its type information. It is computationally infeasible to create a SHA1

collision, so these identifiers are generally speaking safe to use. However, in order to

be useful as a check value function, it must function as a test for equality between

keys, and there may be a few peculiar circumstances where this is dangerous, and

check values should not be used at all. Take for example a situation where a large

random key space is populated with only a comparatively small number of keys (for

example if 3DES keys were derived from encryption of a PAN with a known key).

As there is not a vast number of PANs, all PANs could be tried, and their check

values compared with those of the encrypted derived keys. In these circumstances,

supporting calculation of a check value on the keys would not be prudent.

92

7.3 An Abundance of Attacks

This section describes the concrete attacks known on Security APIs, which are com-

prised of one or more of the building blocks described in the attacker’s toolkit. All

these attacks are concrete in the sense that the API on which they operate was suf-

ficiently well defined to be certain that it was vulnerable. In most cases the attacks

themselves have been implemented on real modules too, which lends further credi-

bility (though the level of correspondence between specification and implementation

must always be taken into account).

In addition to the attacks in this section, there are a few more general attacks, which

(for example) rely upon external factors such as poor design of procedural controls;

these are described in situ in discussions in other chapters of the thesis. The last

section (7.3.12) includes a list of attacks described elsewhere in the thesis, and also

briefly describes attacks newly developed by the author; these appear to be very

significant but cannot be adequately discussed until they are better understood.

7.3.1 VSM Compatibles – XOR to Null Key Attack

Anderson, 2000, [1]

The ‘XOR to Null Key’ attack was discovered by Anderson, and affected the Visa

Security Module and many compatible clones. Modern implementations of the VSM

API have been fixed.

The VSM’s primary method for importing top level keys is from clear components,

written by hand on pieces of paper, or printed into PIN mailer stationery. This

methodology was used for establishing Zone Control Master Keys (ZCMKs) and

also Terminal Master Keys (TMKs). The TMK establishment procedure consisted

of two commands – a privileged console command for generating a TMK component,

and an unrestricted command ‘IG’, which was used to combine key components. The

procedure for loading a key would thus be as follows:

(Key Switch Turned On)

HSM -> Printer : K1 (Generate Component)

HSM -> Host : { K1 }TMK

HSM -> Printer : K2 (Generate Component)

HSM -> Host : { K2 }TMK

(Key Switch Turned Off)

U -> HSM : { K1 }TMK , { K2 }TMK (Combine Key Parts)

HSM -> U : { K1 ⊕ K2 }TMK

93

The supervisor key switch is turned, which enables sensitive commands to be run

from the console – in particular, the generation of key components. Each security

officer then retrieves her key component mailer from the printer. Once the com-

ponents have been entered, supervisor state is cancelled, and a program is run on

the host which calls the IG command to combine the components and form the

final TMK. This procedure was followed for years before the retrospectively simple

attack was spotted: the key components are combined using XOR, so if the same

component is combined with itself, a key of all zeroes will necessarily result.

U -> HSM : { K1 }TMK , { K1 }TMK (Combine Key Parts)

HSM -> U : { 0000000000000000 }TMK

Once there is a known TMK in the system, other transactions allow the encryption

of other TMKs, or even PIN master keys under this key. A complete compromise

results.

The VSM and its successors were ‘fixed’ by making the IG command a privileged

transaction.

7.3.2 VSM Compatibles – A Key Separation Attack

Bond, 2000, [8]

The amalgamation of the TMK and PIN types in the VSM design is a weakness that

can be exploited many ways. One possible attack is to enter an account number

as a TC key, and then translate this to encryption under a PIN key. The command

responsible is designed to allow TC keys to be encrypted with a TMK for transfer to

an ATM, but because TMKs and PIN keys share the same type, the TC key can also be

encrypted under a PIN key in the same way. This attack is very simple and effective,

but is perhaps difficult to spot because the result of encryption with a PIN key is a

sensitive value, and it is counterintuitive to imagine an encrypted value as sensitive

when performing an analysis. Choosing a target account number PAN, the attack

can be followed on the type transition diagram in figure 7.7, moving from (CLEAR)

to TC (1), and finally to TMK_I (2).

(1) User -> HSM : PAN

HSM -> User : { PAN }TC

(2) User -> HSM : { PAN }TC , { PMK1 }TMK

HSM -> User : { PAN }PMK1

94

Figure 7.7: Type diagram for VSM with attack path highlighted

7.3.3 VSM Compatibles – Meet-in-the-Middle Attack

Bond, 2000, [8]

The meet-in-the-middle attack can be used to compromise eight out of the nine types

used by the VSM. As is typical of monotonic APIs, the VSM does not impose limits

or special authorisation requirements for key generation, so it is easy to populate

all the types with large numbers of keys. Furthermore, it cannot properly impose

restrictions on key generation because of the ‘key conjuring’ attack (section 7.2.3)

which works with many HSMs which store keys externally.

The target type should be populated with at least 216 keys, and a test vector en-

crypted under each. In the VSM, the dedicated ‘encrypt test vector’ command

narrowly escapes compromising all type because the default test vector (which is

0123456789ABCDEF) does not have the correct parity to be accepted as a key. In-

stead, the facility to input a chosen terminal key (CLEAR −→ TC in figure 7.7) can

be used to create the test vectors. The final step of the attack is to perform the 240

brute force search offline.

The obvious types to attack are the PIN/TMK and WK types. Once a single PIN/TMK

key has been discovered, all the rest can be translated to type TMK_I, encrypted

under the compromised TMK. The attacker then decrypts these keys offline (e.g

using a home PC). Compromise of a single Working Key (WK) allows all trial PINs

entered by customers to be decrypted by translating them from encryption under

their original WK to encryption under the compromised one (this command is shown

by the looping arrow on WK_I in figure 7.7).

95

7.3.4 4758 CCA – Key Import Attack

Bond, 2000, [8]

One of the simplest attacks on the 4758 is to perform an unauthorised type cast

using IBM’s ‘pre-exclusive-or’ type casting method [16]. A typical case would be

to import a PIN derivation key as a data key, so standard data ciphering commands

could be used to calculate PIN numbers, or to import a KEK as a DATA key, to allow

eavesdropping on future transmissions. The Key_Import command requires a KEK

with permission to import (an IMPORTER), and the encrypted key to import. The

attacker must have the necessary authorisation in his access control list to import

to the destination type, but the original key can have any type. Nevertheless, with

this attack, all information shared by another HSM is open to abuse. More subtle

type changes are possible, such as re-typing the right half of a 3DES key as a left

half.

A related key set must first be generated (1). The Key_Part_Import command acts

to XOR together a chosen value with an encrypted key. If a dual control policy

prevents the attacker from access to an initial key part, one can always be con-

jured (section 7.2.3). The chosen difference between keys is set to the difference

between the existing and desired control vectors. Normal use of the Key_Import

command would import KEY as having the old_CV control vector. However, the

identity (KEK1⊕old_CV) = (KEK2⊕new_CV) means that claiming that KEY was pro-

tected with KEK2, and having type new_CV will cause the HSM to retrieve KEY

correctly (3), but bind in the new type new_CV.

Related Key Set (1) KEK1 = KORIG

KEK2 = KORIG ⊕ (old_CV⊕ new_CV)

Received Key (2) EKEK1⊕old_CV(KEY) , old_CV

Import Process (3) DKEK2⊕new_CV(EKEK1⊕old_CV(PKEY)) = PKEY

Of course, a successful implementation requires circumvention of the bank’s proce-

dural controls, and the attacker’s ability to tamper with his own key part. IBM’s

advice is to take measures to prevent an attacker obtaining the necessary related

keys. Optimal configuration of the access control system can indeed avoid the attack,

but the onus is on banks to have tight procedural controls over key part assembly,

with no detail in the manual as to what these controls should be. The manual will

be fixed [23], but continuing to use XOR will make creating related key sets very

easy. A long-term solution is to change the control vector binding method to have

a one-way property, such that the required key difference to change between types

cannot be calculated – keys and their type information cannot be unbound.

96

7.3.5 4758 CCA – Import/Export Loop Attack

Bond, 2000, [8]

The limitation of the key import attack described in 7.3.4 is that it only applies to

keys sent from other HSMs, because they are the only ones that can be imported.

The Import/Export Loop attack builds upon the Key Import attack by demonstrat-

ing how to export keys from the HSM, so their types can be converted as they are

re-imported.

The simplest Import/Export loop would have the same key present as both an

importer and an exporter. However, in order to achieve the type conversion, there

must be a difference of (old_CV⊕new_CV) between the two keys. Generate a related

key set (1), starting from a conjured key part if necessary. Now conjure a new

key part KEKP, by repeated trial of key imports using IMPORTER1, and claiming

type importer_CV, resulting in (2). Now import with IMPORTER2, claiming type

exporter_CV, the type changes on import as before (3).

(1) IMPORTER1 = RAND

IMPORTER2 = RAND⊕ (importer_CV⊕ exporter_CV)

(2) EIMPORTER1⊕importer_CV(KEKP)

(3) DIMPORTER2⊕exporter_CV(EIMPORTER1⊕importer_CV(KEKP)) = KEKP

(4) EXPORT_CONVERT = KEKP

(5) IMPORT_CONVERT1 = KEKP⊕ (source1_CV⊕ dest1_CV)

· · ·
IMPORT_CONVERTn = KEKP⊕ (source1_CV⊕ destn_CV)

Now use Key_Part_Import to generate a related key set (5) which has chosen dif-

ferences required for all type conversions you need to make. Any key with export

permissions can now be exported with the exporter from the set (4), and re-imported

as a new type using the appropriate importer key from the related key set (5). IBM

recommends audit for same key used as both importer and exporter [16], but this

attack employs a relationship between keys known only to the attacker, so it is

difficult to see how such an audit could succeed.

97

7.3.6 4758 CCA – 3DES Key Binding Attack

Bond, 2000, [8]

The 4758 CCA does not properly bind together the halves of its 3DES keys. Each

half has a type associated, distinguishing between left halves, right halves, and single

DES keys. However, for a given 3DES key, the type system does not specifically

associate the left and right halves as members of that instance. The ‘meet-in-the-

middle’ technique can thus be successively applied to discover the halves of a 3DES

key one at a time. This attack allows all keys to be extracted, including ones which

do not have export permissions, so long as a known test vector can be encrypted.

4758 key generation gives the option to generate replicate 3DES keys. These are

3DES keys with both halves having the same value. The attacker generates a large

number of replicate keys sharing the same type as the target key. A meet-in-the-

middle attack is then used to discover the value of two of the replicate keys (a 241

search). The halves of the two replicate keys can then be exchanged to make two

3DES keys with differing halves. Strangely, the 4758 type system permits distinction

between true 3DES keys and replicate 3DES keys, but the manual states that this

feature is not implemented, and all share the generic 3DES key type. Now that a

known 3DES key has been acquired, the conclusion of the attack is simple; let the

key be an exporter key, and export all keys using it.

If the attacker does not have the CCA role-based access control (RBAC) permissions

to generate replicate keys, he must generate single length DES keys, and change their

left half control vector to ‘left half of a 3DES key’. This type casting can be achieved

using the Key Import attack (section 7.3.4). If the value of the imported key cannot

be found beforehand, 216 keys should be imported as ‘single DES data keys’, used

to encrypt a test vector, and an offline 241 search should find one. Re-import the

unknown key as a ‘left half of a 3DES key’. Generate 216 3DES keys, and swap in

the known left half with all of them. A 240 search should yield one of them, thus

giving you a known 3DES key.

If the attacker cannot easily encrypt a known test pattern under the target key type

(as is usually the case for KEKs), he must bootstrap upwards by first discovering a

3DES key of a type under which he has permissions to encrypt a known test vector.

This can then be used as the test vector for the higher level key, using a Key_Export

to perform the encryption.

A given non-exportable key can also be extracted by making two new versions of it,

one with the left half swapped for a known key, and likewise for the right half. A 256

search would yield the key (looking for both versions in the same pass through the

key space). A distributed effort or special hardware would be required to get results

within a few days, but such a key would be a valuable long term key, justifying

the expense. A brute force effort in software would be capable of searching for all

non-exportable keys in the same pass, further justifying the expense.

98

7.3.7 4758 CCA – Key Part Import Descrack Attack

Clayton & Bond, 2001, [13]

A number of attack instances in this section show techniques from the attack toolkit

applied to the 4758 CCA revealing a vulnerability. However, whilst existence of the

vulnerabilities is difficult to deny, it is debatable whether the particular configu-

rations of the CCA RBAC system typically used will prevent a full and complete

extraction of key material. This attack’s goal is to extract a 3DES key with export

permissions in the clear, using as few access permissions as possible – with the aim

of staying with a realistic threat model. The explanation here is primarily taken

from “Experience Using a Low-Cost FPGA Design to Crack DES Keys” [13], but

focusses on the attack methodology, rather than the DES cracker design.

Performing the Attack on the HSM

A normal attack on the CCA using the meet-in-the-middle tool (section 7.2.2) and

the related key tool (section 7.2.4) is fairly straightforward to derive, and consists

of three stages, shown in figure 7.8 and described below:

(1) Test Pattern Generation: Discover a normal data encryption key to use as a test

pattern for attacking an exporter key. This is necessary because exporter keys are

only permitted to encrypt other keys, not chosen values. The method is to encrypt

a test pattern of binary zeroes using a set of randomly generated data keys, and

then to use the meet-in-the-middle attack to discover the value of one of these data

keys.

(2) Exporter Key Harvesting: Use the known data key from stage (1) as a test

pattern to generate a second set of test vectors for a meet-in-the-middle attack that

reveals two double-length replicate exporter keys (replicate keys have both halves the

same, thus acting like single DES keys). Once this stage is complete, the values of

two of the keys in the set will be known.

(3) Valuable Data Export: Retrieve the valuable key material (e.g. PIN derivation

keys). This requires a known double-length exporter key, as the CCA will not

export a 3DES key encrypted under a single DES exporter key, for obvious security

reasons. Here, the key-binding flaw in the CCA software is used to swap the halves

of two known replicate keys from stage (2) in order to make a double-length key

with unique halves. This full 3DES key can then be used for the export process.

However, the above approach is far from ideal because it requires multiple phases of

key cracking and illicit access to the HSM. In order to perform the attack in a single

access session, the second set of test vectors has to be generated immediately after

the first. However, it is not possible to know in advance which data key from the

set will be discovered by the search, in order to use it as a test pattern. Generating

a second set of test vectors for every possible data key would work in principle, but

99

Test Pattern 0

Set of Exporter Keys X(n)

Set of Test Vectors T(n)

MIMCRACK

Data Key A(?)

Set of Data Keys A(n)

TWO MIMCRACKS

Exporter Keys X(?) X(??)

ENCRYPT

Set of Test Vectors T(n)

EXPORT

Exported Valuable Key Material

EXPORT

SWAP HALVES

DECRYPT

Valuable Key Material

Bank

Bank

Bank

Home

Home

Home

Valuable Key Material

Figure 7.8: Standard implementation of attack on 4758 CCA

100

Data Key A^B

Data Key Part A

Set of Data KeysTest Pattern 0

Set of Test Vectors

ENCRYPT

Exporter Key X^Y

Exporter Key Part X

Set of Exporter Keys

Set of Test Vectors

EXPORT

Exported Valuable Key Material

EXPORT

MIMCRACK

MIMCRACK

Data Key Part A

Data Key A^B

Exporter Key Part X

Exporter X^Y

DECRYPT

Valuable Key Material

Data Key Part B Exporter Key Part YSet of Data Key Parts

XOR XOR XOR

Set of Exporter Key Parts

XOR

Bank

Home

F
igu

re
7.9:

O
p

tim
ised

im
p

lem
en

tation
of

attack
on

4758
C

C
A

101

the number of operations the HSM would have to perform would be exponentially

increased, and at the maximum transaction rate for a 4758 (roughly 300 per second),

collecting this data set would take ten days of unauthorised access.

So the first stage of the online attack had to yield the value of a particular data

key that was chosen in advance, which could then be used as the test pattern for

the second stage. The solution is shown in figure 7.9. It is first necessary to create

a related key set using the Key Part Import command. From the discovery of any

single key, the values of all of the rest can be calculated. This related key set is

made by generating an unknown data key part and XORing it with 214 different

known values (for instance, the integers 0 . . . 16383). Any one of the keys can then

immediately be used for the second stage of the attack, even though its actual value

will only be discovered later on.

The second stage is to export this single data key under a set of double-length

replicate exporter keys and to use a meet-in-the-middle attack on the results. Two

keys need to be discovered so that their halves can be swapped to create a non-

replicate exporter key. Once again the same problem arises – it is impossible to

tell in advance which two keys will be discovered, and so the valuable key material

cannot be exported until after the cracking was complete. Generating a set of related

exporter keys again solves the problem. Discovering just one replicate key now gives

access to the entire set. Thus a double-length exporter with unique halves can be

produced prior to the cracking activity by swapping the halves of any two of the

related keys.

Implementation of this second stage of the process reveals an interesting and well-

hidden flaw in the Key Part Import command. The concept of binding flaws has

already been identified in the encrypted key tokens (see section 7.3.6), but it is also

present in Key Part Import: it is possible to subvert the creation of a double-length

replicate key so as to create a uniquely halved double-length key by the simple action

of XORing in a new part with differing halves. This second instance of the flaw was

discovered during the process of trying to implement the naive three stage attack

for real.

Finally, the new double-length exporter key made from the unknown replicate key

part from stage two can be used to export the valuable key material, as is visible in

figure 7.9. The attack retains the three conceptual stages, but there is no dependency

on the values of cracked keys during the period of access to the HSM. This allows

the data collection for all three stages to be run in a single session and the cracking

effort to be carried out in retrospect.

Cracking the DES Keys

A home PC can be used for the DES key cracking, and this might be typical of

the resources immediately available to a real-world attacker. However, experiments

102

performed when the attack was discovered showed that cracking a single key from

a set of 216 would take a typical 800 MHz machine about 20 days. It may not

be possible to increase the number of test vectors collected, as 216 is roughly the

maximum number of encrypted results that can be harvested during a “lunch-break-

long” period of access to the CCA software. “No questions asked” access to multiple

PCs in parallel is also a substantial risk, so a faster method is preferable to allow the

attack to complete before a bank’s audit procedures might spot the unauthorised

access to their HSM.

Given the benefits of implementing DES in hardware, and the flexibility and ease

of implementation associated with FPGAs, Altera’s “Excalibur” NIOS evaluation

board [40] was a promising candidate platform for implementing a DES cracker.

The NIOS evaluation board is an off-the-shelf, ready-to-run, no-soldering-required

system, and comes complete with all the tools necessary to develop complex systems.

Altera generously donated a board for free; in 2001 its retail price was US$995.

The basic idea of a brute force “DES cracker” is to try all possible keys in turn and

stop when one is found that will correctly decrypt a given value into its plaintext;

this is the sort of machine that was built by the EFF in 1998 [21]. To crack key

material with known test vectors, the cracker works the other way round; it takes

an initial plaintext value and encrypts it under incrementing key values until the

encrypted output matches one of the values being sought. The design implemented

runs at 33.33 MHz, testing one key per clock cycle. This is rather slow for cracking

DES keys – and it would take, with average luck, 34.6 years to crack a single key.

However, the attack method allows many keys to be attacked in parallel and because

they are all related it does not matter which one is discovered first.

The design was made capable of cracking up to 214 keys in parallel (i.e. it simul-

taneously checked against the results of encrypting the plaintext with 214 different

DES keys). The particular Excalibur board being used imposed the 16384 limita-

tion; if more memory had been available then the attack could have proceeded more

quickly. The actual comparison was done in parallel by creating a simple hash of

the encrypted values (by XORing together groups of 4 or 5 bits of the value) and

then looking in that memory location to determine if an exact match had occurred.

Clearly, this gives rise to the possibility that some of the encrypted values obtained

from the 4758 would need to be stored in identical memory locations. We just dis-

carded these clashes and collected rather more than 214 values to ensure that the

comparison memory would be reasonably full.

As already indicated, the attack requires two cracking runs, so one would hope to

complete it in just over 2 days. In practice, the various keys we searched for were

found in runs taking between 5 and 37 hours, which is well in accordance with

prediction.

103

Implementation Overview

The DES cracker was implemented on the Altera Excalibur NIOS Development

board [40], as seen in figure 7.10. This board contains an APEX EP20K200EFC484-

2X FPGA chip which contains 8320 Lookup Tables (LUTs) – equivalent to approxi-

mately 200000 logic gates. The FPGA was programmed with a DES cracking design

written in Verilog alongside of which, within the FPGA, was placed a 16-bit NIOS

processor, which is an Altera developed RISC design which is easy to integrate with

custom circuitry. The NIOS processor runs a simple program (written in GNU C

and loaded into some local RAM on the FPGA) which looks after a serial link. The

test vectors for the DES crack are loaded into the comparison memory via the serial

link, and when cracking results are obtained they are returned over the same link.

Although the NIOS could have been replaced by a purely hardware design, there

was a considerable saving in complexity and development time by being able to use

the pre-constructed building blocks of a processor, a UART and some interfacing

PIOs.

Figure 7.10: The NIOS Evaluation board running the DES cracker

The cracker can be seen in action on the logic analyser pictured in Fig. 7.11 below.

The regular signal on the third trace is the clock. The second signal down shows

a 32-bit match is occurring. This causes a STOP of the pipeline (top signal) and

access to an odd numbered address value (bottom signal). The other signals are

some of the data and address lines.

The full attack described in this paper was run on two occasions in 2001 at the full

rate of 33.33 MHz (approx. 225 keys/second). In both cases the expected running

104

Figure 7.11: The DES cracker actually running

time of 50 hours (based on average luck in locating a key) was comfortably beaten

and so it would have been possible to start using the PIN derivation keys well before

unauthorised access to the 4758 could have been detected.

Date Start Finish Duration Key value found

Aug 31 19:35 17:47 22 h 12 min #3E0C7010C60C9EE8

Sep 1 18:11 23:08 4 h 57 min #5E6696F6B4F28A3A

Oct 9 17:01 11:13 19 h 12 min #3EEA4C4CC78A460E

Oct 10 18:17 06:54 12 h 37 min #B357466EDF7C1C0B

The results of this attack were communicated to IBM. In early November 2001

they issued a warning to CCA users [27] cautioning them against enabling various

functionality that the attacks depended upon. In February 2002 they issued a new

version of the CCA software [28] with some substantial amendments that addressed

many issues raised by this attack.

Interestingly, the specification-level faults that were exploited in this attack have

turned out to be just part of the story. Although much of the effort was devoted into

reducing the effective strength of the CCA’s 3DES implementation to that of single

DES, IBM’s analysis of the attack uncovered an implementation-level fault that

made this whole stage unnecessary [29]. The CCA code was failing to prevent export

of a double-length key under a double-length replicate key, despite the specifications

stating that this would not be allowed.

105

7.3.8 4758 CCA – Weak Key Timing Attack

Bond & Clayton, 2001, Unpublished

The FIPS standards for DES advise the avoidance of using one of the 64 weak DES

keys, and although IBM’s CCA itself is not FIPS 140-1 validated, it observes precau-

tions to avoid accidentally selecting one of these keys for a master key at random.

The CCA master key is a three-key 3DES key, and it is checked by comparing each

third with a table of weak keys stored in memory. The comparison is simply a call

to the C memcmp command, and thus is a byte by byte comparison with the target

data. The memcmp call will return when the first byte fails to match. There is thus

an inherent timing characteristic created by the comparison, dependent upon the

number of initial bytes of the master key which match weak key bytes.

The CCA firmware package that is loaded into the 4758 is only signed, not en-

crypted. It was disassembled and the comparison code located and confirmed to be

susceptible. However, the task remained of performing an accurate timing measure-

ment. The device driver DLL which governed interaction with the 4758 over the

PCI bus was modified to sit in a tight loop waiting for a response over the bus, and

count clock cycles. On a fast machine (the author used a 1.6GHz machine), this was

easily enough accuracy to measure single instructions on the 100MHz 80486 within

the 4758.

However, despite promising practical work, the attack remained theoretical, as the

weak key testing was not done for normal key generation (only for master key

generation which is a rare event, usually performed only when the 4758 is connected

to a trusted host), and a large amount of noise was generated by the PCI bus

buffering, which was never successfully modelled and compensated for. However,

the principle of a timing attack on DES weak key checking remains, and it has

recently become apparent that other FIPS approved devices are checking all DES

keys generated against the weak key list in a similar manner. In particular, the

Chrysalis Luna CA3 token seems to be vulnerable. It is hoped that this timing

attack will be successfully implemented against a real device shortly. It will be ironic

if it turns out that FIPS advice to avoid weak keys has (inadvertently) caused more

severe attacks than the phenomenally rare pathological cases it protects against.

7.3.9 4758 CCA – Check Value Attack

Clulow, 2002, Unpublished

The 4758 CCA has a careless implementation fault in the Key_Test command. The

command is a multi-purpose check value calculation command, which aims to be

interoperable with equipment supporting all sorts of different check values of types

and different lengths. It should be possible to calculate the check value of any key in

the system – hence there are few restrictions on the possible control vectors supplied

106

to the command. It seems that the implementers recognised this, and decided that

no control vector checking was necessary at all!

Whilst it is meaningful to calculate a check value for any type of key, it should not be

possible to calculate check values for subcomponents of 3DES keys, nor present two

key halves with completely different control vectors. One simple result is that the

left half of a 3DES key can be supplied twice, and the check value retrieved as a test

pattern on what is then effectively a single length DES key. The meet-in-the-middle

attack can then be used to establish a known DES-key in the system. A normal run

of the Key_Test command is shown followed by the attack in figure 7.12.

U -> C : { KL }Km/left , { KR }Km/right , left , right

C -> U : { 0000000000000000 }KL|KR

U -> C : { KL }Km/left , { KL }Km/left , left , left

C -> U : { 0000000000000000 }KL|KL

Figure 7.12: Normal and attack runs of Key Test

The resulting attack is thus a combination of an implementation level fault and a

specification level fault (an API attack). Composite attacks of this nature are very

hard to plan for and eliminate from designs.

7.3.10 VSM Compatibles – Decimalisation Table Attack

Bond & Zielinski, Clulow, 2002, [10], [15]

The decimalisation table attack affects financial Security APIs supporting IBM’s

PIN derivation method. It is a radical extension of a crude method of attack that

was known about for some time, where a corrupt bank programmer writes a program

that tries all possible PINs for a particular account. With average luck such an attack

can discover a PIN with about 5000 transactions. A typical HSM can check maybe

60 trial PINs per second in addition to its normal load, thus a corrupt employee

executing the program during a 30 minute lunch break could only make off with

about 25 PINs.

The first ATMs to use decimalisation tables in their PIN generation method were

IBM’s 3624 series ATMs, introduced widely in the US in the late seventies. This

method calculates the customer’s original PIN by encrypting the account number

printed on the front of the customer’s card with a secret DES key called a “PIN

derivation key”. The resulting ciphertext is converted into hexadecimal, and the

first four digits taken. Each digit has a range of ‘0’-‘F’. Hexadecimal PINs would

have confused customers, as well as making keypads unnecessarily complex, so in

order to convert this value into a decimal PIN , a “decimalisation table” is used,

107

which is a many-to-one mapping between hexadecimal digits and decimal digits.

The left decimalisation table in figure 7.13 is typical.

0123456789ABCDEF 0123456789ABCDEF

0123456789012345 0000000100000000

Figure 7.13: Normal and attack decimalisation tables

This table is supplied unprotected as an input to PIN verification commands in many

HSMs, so an arbitrary table can be provided along with the PAN and a trial PIN. But

by manipulating the contents of the table it becomes possible to learn much more

about the value of the PIN than simply excluding a single combination. For example,

if the right hand table is used, a match with a trial pin of 0000 will confirm that

the PIN does not contain the number 7, thus eliminating over 10% of the possible

combinations. This section first discusses methods of obtaining the necessary chosen

encrypted PINs, then presents a simple scheme that can derive most PINs in around

24 guesses. Next it presents an adaptive scheme which maximises the amount of

information learned from each guess, and takes an average of 15 guesses. Finally,

a third scheme is presented which demonstrates that the attack is still viable even

when the attacker cannot control the guess against which the PIN is matched.

Obtaining chosen encrypted trial PINs

Some financial APIs permit clear entry of trial PINs from the host software. For

instance, this functionality may be required to input random PINs when generating

PIN blocks for schemes that do not use decimalisation tables. The CCA has a

command called Clear_PIN_Encrypt, which will prepare an encrypted_PIN_block

from the chosen PIN. It should be noted that enabling this command carries other

risks as well as permitting our attacks. If the PINs do not have randomised padding

added before they are encrypted, an attacker could make a table of known trial

encrypted PINs, compare each arriving encrypted PIN against this list, and thus

easily determine its value. This is known as a code book attack. If it is still necessary

to enable clear PIN entry in the absence of randomised padding, some systems can

enforce that the clear PINs are only encrypted under a key for transit to another

bank – in which case the attacker cannot use these guesses as inputs to the local

verification command.

So, under the assumption that clear PIN entry is not available to the attacker, his

second option is to enter the required PIN guesses at a genuine ATM, and intercept

the encrypted_PIN_block corresponding to each guess as it arrives at the bank.

Our adaptive decimalisation table attack only requires five different trial PINs –

0000 , 0001 ,0010 , 0100 , 1000. However the attacker might only be able to

acquire encrypted PINs under a block format such as ISO-0, where the account

108

number is embedded within the block. This would require him to manually input

the five trial PINs at an ATM for each account that could be attacked – a huge

undertaking which totally defeats the strategy.

A third course of action for the attacker is to make use of the PIN offset capability

to convert a single known PIN into the required guesses. This known PIN might be

discovered by brute force guessing, or simply opening an account at that bank.

Despite all these options for obtaining encrypted trial PINs it might be argued

that the decimalisation table attack is not exploitable unless it can be performed

without a single known trial PIN. To address these concerns, a third algorithm was

created, which is of equivalent speed to the others, and does not require any known

or chosen trial PINs. This algorithm has no technical drawbacks – but it is slightly

more complex to explain.

We now describe three implementations based upon this weakness. First, we present

a 2-stage simple static scheme which needs only about 24 guesses on average. The

shortcoming of this method is that it needs almost twice as many guesses in the

worst case. We show how to overcome this difficulty by employing an adaptive

approach and reduce the number of necessary guesses to 24. Finally, we present an

algorithm which uses PIN offsets to deduce a PIN from a single correct encrypted

guess, as is typically supplied by the customer from an ATM.

Initial Scheme

The initial scheme consists of two stages. The first stage determines which digits

are present in the PIN. The second stage consists in trying all the possible PINs

composed of those digits.

Let Dorig be the original decimalisation table. For a given digit i, consider a binary

decimalisation table Di with the following property. The table Di has 1 at position

x if and only if Dorig has the digit i at that position. In other words,

Di[x] =
1 if Dorig[x] = i,

0 otherwise.

For example, for a standard table Dorig = 0123 4567 8901 2345, the value of D3 is

0001 0000 0000 0100.

In the first phase, for each digit i, we check the original PIN against the decimali-

sation table Di with a trial PIN of 0000. It is easy to see that the test fails exactly

when the original PIN contains the digit i. Thus, using only at most 10 guesses, we

have determined all the digits that constitute the original PIN.

In the second stage we try every possible combination of those digits. The number

of combinations depends on how many different digits the PIN contains. The table

below gives the details:

109

Digits Possibilities

A AAAA(1)

AB ABBB(4), AABB(6), AAAB(4)

ABC AABC(12), ABBC(12), ABCC(12)

ABCD ABCD(24)

The table shows that the second stage needs at most 36 guesses (when the original

PIN contains 3 different digits), which gives 46 guesses in total. The expected

number of guesses is about 23.5.

Adaptive Scheme

Given that the PIN verification command returns a single bit yes/no answer, it is

logical to represent the process of cracking a PIN with a binary search tree. Each

node v contains a guess, i.e., a decimalisation table Dv and a PIN pv. We start

at the root node and go down the tree along the path that is determined by the

results of our guesses. Let porig be the original PIN. At each node, we check whether

Dv(porig) = pv. Then, we move to the right child if it is true and to the left child

otherwise.

Each node v in the tree can be associated with a list Pv of original PINs such that

p ∈ Pv if and only if v is reached in the process described in the previous paragraph

if we take p as the original PIN. In particular, the list associated with the root node

contains all possible pins and the list of each leaf contains only one element: an

original PIN porig.

Consider the initial scheme described in the previous section as an example. To give

a simplified example, imagine an original PIN consists of two binary digits and a

correspondingly trivial decimalisation table, mapping 0→ 0 and 1→ 1. Figure 7.14

depicts the search tree for these settings.

The main drawback of the initial scheme is that the number of required guesses

depends strongly on the original PIN porig. For example, the method needs only 9

guesses for porig = 9999 (because after ascertaining that digit 0–8 do not occur in

porig this is the only possibility), but there are cases where 46 guesses are required.

As a result, the search tree is quite unbalanced and thus not optimal.

One method of producing a perfect search tree (i.e., the tree that requires the small-

est possible number of guesses in the worst case) is to consider all possible search

trees and choose the best one. This approach is, however, prohibitively inefficient

because of its exponential time complexity with respect to the number of possible

PINs and decimalisation tables.

It turns out that not much is lost when we replace the exhaustive search with a

simple heuristics. We will choose the values of Dv and pv for each node v in the

following manner. Let Pv be the list associated with node v. Then, we look at all

110

D10(p)
?
= 00

p = 11

yes

D01(p)
?
= 10

no

p = 10

yes

D01(p)
?
= 01

no

p = 01

yes

p = 00

no

Figure 7.14: The search tree for the initial scheme. Dxy denotes the decimalisation

table that maps 0→ x and 1→ y.

possible pairs of Dv and pv and pick the one for which the probability of Dv(p) = pv
for p ∈ Pv is as close to 1

2
as possible. This ensures that the left and right subtrees

are approximately of the same size so the whole tree should be quite balanced.

This scheme can be further improved using the following observation. Recall that

the original PIN porig is a 4-digit hexadecimal number. However, we do not need to

determine it exactly; all we need is to learn the value of p = Dorig(porig). For example,

we do not need to be able to distinguish between 012D and ABC3 because for both

of them p = 0123. It can be easily shown that we can build the search tree that is

based on the value of p instead of porig provided that the tables Dv do not distinguish

between 0 and A, 1 and B and so on. In general, we require each Dv to satisfy the

following property: for any pair of hexadecimal digits x, y: Dorig[x] = Dorig[y] must

imply Dv[x] = Dv[y]. This property is not difficult to satisfy and in reward we can

reduce the number of possible PINs from 164 = 65 536 to 104 = 10 000. Figure 7.15

shows a sample run of the algorithm for the original PIN porig = 3491.

PIN Offset Adaptive Scheme

When the attacker does not know any encrypted trial PINs, and cannot encrypt

his own guesses, he can still succeed by manipulating the offset parameter used to

compensate for customer PIN change. The scheme has the same two stages as the

initial scheme, so our first task is to determine the digits present in the PIN.

Assume that an encrypted PIN block containing the correct PIN for the account

has been intercepted (the vast majority of arriving encrypted PIN blocks will satisfy

this criterion), and for simplicity that the account holder has not changed his PIN

so the correct offset is 0000. Using the following set of decimalisation tables, the

attacker can determine which digits are present in the correct PIN.

111

No # Poss. pins Decimalisation table Dv Trial pin pv Dv(porig) pv
?
= Dv(porig)

1 10000 1000 0010 0010 0000 0000 0000 yes

2 4096 0100 0000 0001 0000 0000 1000 no

3 1695 0111 1100 0001 1111 1111 1011 no

4 1326 0000 0001 0000 0000 0000 0000 yes

5 736 0000 0000 1000 0000 0000 0000 yes

6 302 0010 0000 0000 1000 0000 0000 yes

7 194 0001 0000 0000 0100 0000 0001 no

8 84 0000 1100 0000 0011 0000 0010 no

9 48 0000 1000 0000 0010 0000 0010 no

10 24 0100 0000 0001 0000 1000 1000 yes

11 6 0001 0000 0000 0100 0100 0001 no

12 4 0001 0000 0000 0100 0010 0001 no

13 2 0000 1000 0000 0010 0100 0010 no

Figure 7.15: Sample output from adaptive test program

Guess Guessed Cust. Cust. Guess Decimalised Verify

Offset Decimalisation Table Guess +Guess Offset Original PIN Result

0001 0123456799012345 1583 1584 1593 no

0010 0123456799012345 1583 1593 1593 yes

0100 0123456799012345 1583 1683 1593 no

1000 0123456799012345 1583 2583 1593 no

Figure 7.16: Example of using offsets to distinguish between digits

Di[x] =
Dorig[x] + 1 if Dorig[x] = i,

Dorig[x] otherwise.

For example, for the table Dorig = 0123 4567 8901 2345, the value of the table D3 is

0124 4567 8901 2445. He supplies the correct encrypted PIN block and the correct

offset each time.

As with the initial scheme, the second phase determines the positions of the digits

present in the PIN, and is again dependent upon the number of repeated digits in

the original PIN. Consider the common case where all the PIN digits are different,

for example 1583. We can try to determine the position of the single 8 digit by

applying an offset to different digits and checking for a match.

Each different guessed offset maps the customer’s correct guess to a new PIN which

may or may not match the original PIN after decimalisation with the modified table.

This procedure is repeated until the position of all digits is known. Cases with all

digits different will require at most 6 transactions to determine all the position data.

Three different digits will need a maximum of 9 trials, two digits different 13 trials,

112

and if all the digits are the same no trials are required as there are no permutations.

When the parts of the scheme are assembled, 16.5 guesses are required on average

to determine a given PIN.

Results

We first tested the adaptive algorithm exhaustively on all possible PINs. The distri-

bution in figure 7.17 was obtained. The worst case has been reduced from 45 guesses

to 24 guesses, and the mode has fallen from 24 to 15 guesses. We then implemented

the attacks on the CCA (version 2.41, for the IBM 4758), and successfully extracted

PINs generated using the IBM 3624 method. The attack has also been checked

against APIs for the Thales RG7000 and the HP-Atalla NSP.

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Attempts

N
um

be
r

of
 P

IN
s

Figure 7.17: Distribution of guesses required using adaptive algorithm

Prevention

It is easy to perform a check upon the validity of the decimalisation table. Several

PIN verification methods that use decimalisation tables require that the table be

0123456789012345 for the algorithm to function correctly, and in these cases en-

forcing this requirement will considerably improve security. However, the author has

recently observed that skewed distribution of PINs will continue to cause a problem

– see section 7.3.12 for details. Continuing to support proprietary decimalisation

113

tables in a generic way will be hard to do. A checking procedure that ensures a

mapping of the input combinations to the maximum number of possible output

combinations will protect against the naive implementation of the attack, but not

against the variant which exploits PIN offsets and uses only minor modifications

to the genuine decimalisation table. A better option is for the decimalisation table

input to be cryptographically protected so that only authorised tables can be used.

The short-term alternative to the measures above is to use more advanced intrusion

detection, and it seems that the long term message is clear: continuing to support

decimalisation tables is not a robust approach to PIN verification. Unskewed random

generation of PINs is really the only sensible approach.

7.3.11 Prism TSM200 – Master Key Attack

Bond, 2001, Unpublished

In the 1990s, South African HSM manufacturer Prism produced a version of its

TSM200 with a transaction set specially customised for use in the prepayment elec-

tricity meter system developed by South African provider Eskom. Electricity meters

included a tamper-resistant device which accepts “tokens” (simply 10 numeric digit

strings) that increase its available credit. Tokens could be bought from a machine

at a local newsagent: the function of Prism’s module was to control the issue of to-

kens, and prevent the newsagent from cheating on the electricity supplier. If anyone

could steal the keys for token manufacture, they could charge to dispense tokens

themselves, or simply cause mischief by dispensing free electricity. The project is

described more fully in [5].

A picture of the TSM200 is shown in section 6.3.6 of the Hardware Security Module

chapter. The Prism API for the device is unusual compared with others, as it is non-

monotonic (see section 7.1.4 for a discussion of monotonicity). The device uses only

symmetric DES keys; these are stored within the device in 100 different registers

available for the task. 3DES is supported by storing two keys in adjacent registers.

Communications & Communications Client

The author was given access to a TRSM for testing purposes, which by chance came

with a live master key. This gave the opportunity for a useful challenge – could an

API attack be performed to extract this key with only a single module, and with no

second attempt should the attack fail and somehow corrupt the module state?

The HSM communicates with the outside world via a ‘virtual serial port’ – a single

address mapped in memory through which commands can be sent and responses

received. The transactions and data are encoded in ASCII so, given enough patience,

a human can communicate directly with the module. Commands consisted of two

letters indicating the general type of command, a question mark symbol indicating

114

it was a query, and then two letters for the command name. For example, the

commands to initialise register 86 and put in the clear value of a key is as follows:

Security Officer 1 -> HSM : SM?IK 86 08F8E3973E3BDF26

HSM -> Security Officer 1 : SM!IK 00 91BA78B3F2901201

The module acknowledges that command by repeating the name with the question

mark replaced by an exclamation mark: SM stands for ‘Security Module’, and IK

for ‘Initialise Key (Component)’. The two digits following are a response code ‘00’,

indicating success, followed by the check value of the new contents of the register.

Some commands such as the one above affect the state of internal registers, and due

to dependencies between registers specified by the API, modification of one register

could trigger erasure of others. A communications client was thus designed that

had active and passive modes. Passive mode would only permit commands to be

sent which did not affect the internal state of the module, active would allow all

commands.

In order to safely develop macros that repeatedly executed commands constituting

an attack, the communications client logged all commands and responses, and had

an offline mode where the sequence of automatically generated commands could be

inspected before actually risking sending them. These features were instrumental in

developing the implementation of the attack without damaging the HSM internal

state.

The Attack

An attack on the API was rapidly spotted after experimenting with the API. It ex-

ploited three building blocks from the attacker’s toolkit – meet-in-the-middle attack

on DES, a key binding failure, and poor check values – as well as a further API

design error specific to the TSM200.

In order to ascertain which registers contain which keys, the API provides a SM?XX

command, which returns a check value. The check value is the complete result of

encrypting a string of binary zeroes with the DES key in that register. In fact, every

command that modified the state of a register automatically returned a check value

on the new contents of the register.

This 64-bit check value constituted a perfect test vector for a meet-in-the-middle

attack. However, there were some problems: keys generated at random were not

returned in encrypted form, but stored internally in a register. So if a large set of

keys were to be generated, each had to be exported under some higher level key

which could not be attacked, and it would be possible to discover the value of a

key using the meet-in-the-middle attack that was marked internally as unknown.

This was a definite flaw, but did not in itself constitute an attack on the deployed

115

Security Officer 1 -> HSM : SM?IK 86 08F8E3973E3BDF26

HSM -> Security Officer 1 : SM!IK 00 91BA78B3F2901201

Security Officer 1 -> HSM : SM?IK 87 E92F67BFEADF91D9

HSM -> Security Officer 1 : SM!IK 00 0D7604EBA10AC7F3

Security Officer 2 -> HSM : SM?AK 86 FD29DA10029726DC

HSM -> Security Officer 2 : SM!AK 00 EDB2812D704CDC34

Security Officer 2 -> HSM : SM?AK 87 48CCA975F4B2C8A5

HSM -> Security Officer 2 : SM!AK 00 0B52ED2705DDF0E4

Figure 7.18: Normal initialisation of master key by security officers.

system: all keys stored in a hierarchy recorded their parent key, and could only

be re-exported under that key. Thus if a new exporter key were generated and

discovered using this attack, it could not be used for exporting any of the existing

target keys in the device. This design feature was particularly elegant.

However, the key part loading procedure offered scope for attack as well as random

generation of keys. Figure 7.18 shows the normal use of the SM?IK and SM?AK

commands by two security officers, who consecutively enter their key parts.

There was no flag to mark a key built from components as completed – any user

could continue to XOR in keyparts with existing keys ad infinitum. So to perform a

meet-in-the-middle attack, a related key set could be used, based around an existing

unknown key, rather than generating a totally random set of keys. There was just

one key created from components under which the target keys were stored – the

master key (by convention kept in registers 86 and 87). The key binding failure

then came into play: the check values were returned on each half of the 3DES key

independently, so this meant that it could be attacked with only twice the effort of

a DES key (i.e. two meet-in-the-middle searches).

A final crucial hurdle remained – changing the master key caused a rippling erasure of

all child keys, thereby destroying the token generation keys which were the ultimate

target. Fortunately the answer was already there in the earlier reasoning about

attack strategy – export all keys in the hierarchy before attacking the master key,

and re-import them once it had been discovered.

Completing the Attack

The test vectors were harvested using a small loop operation, which XORed a new

constant in with the master key half each time, and then recorded the check value

returned. At the end of the loop the master key was restored to its original value.

116

For I= 0000000000000001 to 000000000001FFFF

{

SM?AK 87 (I xor (I-1))

SM!AK 00 (result)

store the pair (I, result)

}

Finally, the key hierarchy exported before the master key was attacked was de-

crypted offline using a home PC. The author successfully implemented the attack

as described in 2001; Prism was informed and they later modified their API to limit

the number of components which could be combined into a register.

7.3.12 Other Attacks

Attacks described elsewhere

• Dual Security Officer Attack – see section 8.4.1

• M-of-N Security Officer Attack – see section 8.4.2

Recent Attacks not fully described

These new attacks have been discovered so recently that they cannot be fully in-

corporated in this thesis. Brief summaries suitable for those familiar with financial

Security APIs have been included; academic publication is pending.

• PVV Clash Attack – VISA PVV values are calculated by encrypting the

transaction security value, and then truncating and decimalising the result.

There is a good probability that several different transaction security values

will produce the same PVV as a result – thus there may be several PINs that

could be entered at an ATM that will be authorised correctly. An insider could

use PVV generation transactions to find the rarer accounts which may have

ten or more correct PINS.

• ISO-0 Collision Attack – Some PIN generation commands return the gen-

erated PIN as an encrypted ISO-0 PIN block, in order to send off to mass PIN

mailer printing sites. By using these generation commands and calculating all

the PINs for the same account by stepping through the offsets, one can build

up a full set of encrypted PIN blocks for a particular PAN. These blocks could

alternatively be generated by either repeatedly calling a random PIN generate

function (as with PVV) until by luck all values get observed. All the attacker

can see are the encrypted PIN blocks, and he cannot see what order they are

117

in. Consider the example below, which uses 1 digit PINS and PANs, and 4

digit encrypted PIN blocks.

The attacker observes that encblock AC42 from the left hand list does not

occur in the right hand list, and likewise for encblock 9A91. Therefore he

knows that the PIN corresponding to AC42 is either 8 or 9 (and that the PIN

corresponding to 9A91 is either 8 or 9). The attack can be built up to reveal

two digits of the PIN, as with Clulow’s PAN modification attack [15].

PAN PIN PAN⊕PIN encblock PAN PIN PAN⊕PIN encblock

7 0 7 2F2C 0 0 0 21A0

7 1 6 345A 0 1 1 73D2

7 2 5 0321 0 2 2 536A

7 3 4 FF3A 0 3 3 FA2A

7 4 3 FA2A 0 4 4 FF3A

7 5 2 536A 0 5 5 0321

7 6 1 73D2 0 6 6 345A

7 7 0 21A0 0 7 7 2F2C

7 8 F AC42 0 8 8 4D0D

7 9 E 9A91 0 9 9 21CC

• ISO-0 Dectab PIN Derivation Attack – Imagine a financial HSM com-

mand Encrypted_PIN_Generate, which derives a PIN from a PAN, adds an

initial offset, then stores it as an ISO-0 PIN block. It has a decimalisation

table hardwired into the command that cannot be altered.

1. By looping through the offset value you can discover all 10000 possible

encrypted PIN blocks for that account, but you don’t know which are

which.

2. The classic way to proceed is to make a genuine guess at an ATM, and

try and catch the encrypted PIN block as it arrives for verification. This

should give you a start point into the loop, which you can use to calculate

the correct PIN. However, it is ugly – it requires one trip to a real ATM

per account attacked.

3. Instead, conjure many different PIN derivation keys, and use each to

derive a ‘correct’ PIN from the PAN of the target account. Keep the offset

fixed at 0000. The derived PINs generated under different PIN derivation

keys will be biased in accordance with the (fixed) decimalisation table.

4. This creates a unique distribution of frequency of occurrence of encrypted

PIN blocks outputed by the command. This distribution (combined with

a loop through offsets under a single key) allows you to synchronise the

loop of encrypted PIN block values with the loop of real PINs.

118

5. The estimated transaction cost is 10000 for the loop, and maybe 2,000–

10,000 data samples to determine the distribution. With modern trans-

action rates this equates to about 30 seconds per PIN. The attack should

work on any financial HSM where you can conjure keys (or that has

unrestricted generation facilities).

7.4 Formal Analysis of Security APIs

7.4.1 Foundations of Formal Analysis

This thesis constitutes the first comprehensive academic study of Security APIs.

Though they have existed for several decades, their design and development has

been the preserve of industry. One might expect the formal methods community to

have already embraced the study of Security APIs as a natural extension of protocol

analysis. This has not been the case, due in part to restricted circulation of API

specifications, but also due to the intrinsic nature of APIs themselves. Security API

use sufficiently specialist cryptographic primitives central to functionality to put

Security API design a distance away from O/S design (and the corresponding “pro-

gram proving” formal methods camp), and much closer to cryptographic protocol

analysis.

Unfortunately, the security protocols analysis camp seems reluctant to take on board

and interest themselves in problems with any degree of functional complexity –

that is, problems which cannot be expressed concisely. The only formal analysis

previously made of a Security API is in the 1992 paper “An Automatic Search

for Security Flaws in Key Management Schemes” [32], which describes the use of

a search tool employing specially designed heuristics to try to find sequences of

commands which will reveal keys intended to remain secret. The paper describes

the search tool and heuristics in some detail, but shies away from describing the

API itself, stating only that the work was done in cooperation with an unnamed

industry partner.

In comparison, for example, with an authentication protocol, a Security API is

several orders of magnitude more complex to understand, not in terms of subtleties,

but in the multitude of commands each of which must be understood. It may take

weeks, not days, of studying the documentation until a coherent mental picture of

the API can be held in the analyst’s head. In addition to the semantics of the

transaction set, the purpose of the API must be understood – the policy which it

is trying to enforce. For some examples such as PIN processing, the main elements

of the policy are obvious, but for more sophisticated key management operations, it

may require some thought to decide whether an the weakness is actually a breach

of policy.

119

Indeed it now seems that many conventional real-world protocols are becoming less

attractive targets for analysis, as they pick up further functional complexity, back-

wards compatibility issues, and suffer the inevitable bloat of committee design. The

analysis of the Secure Electronic Transaction (SET) protocol made by Larry Paul-

son [7] gives an idea of the determination required to succeed simply in formalising

the protocol.

There is thus little past work to build upon which comes directly under the heading

of Security APIs. In light of this, the formal analysis in this thesis builds on that of

security protocols, which is a well established area of work with hundreds of papers

published. The APIs analysed are specifically concerned with financial PIN process-

ing, due in no small part to its simple security policy – “the PIN corresponding to

a customer’s account must only be released to that customer”.

So, under what circumstances can the literature and tools for protocol analysis be

applied to Security APIs?

General-purpose tools from the program correctness camp such as theorem provers

and model checkers which have been applied to security protocols with success might

also be applied to Security APIs, as they were design to be general purpose in the

first place. However, there is no guarantee that the heuristics and optimisations

developed for these tools will be well-suited to Security API analysis.

There are obvious similarities between a Security API and a security protocol. The

user and the HSM can be considered principals, and the primitives used for con-

structing messages – encryption, decryption, concatenation are very similar. In both,

the messages consist of the same sorts of data: nonces, identifiers, timestamps, key

material, and so on.

However, the differences are significant too. Firstly, an API is a dumb adversary.

When a security protocol is run on behalf of a human – Alice or Bob – it is often

assumed that deviations or inconsistencies in the execution of the protocol can be

effectively reported and that the human can react when their protocol comes under

attack. Todays APIs do not interact in this way with their owners, and will stand

idly by whilst large quantities of malformed and malicious commands are sent to

them. Secondly, APIs are qualitatively larger than security protocols. There are

several orders of magnitude more messages than in an authentication protocol, and

the messages themselves are larger, even though they are made from very similar

building blocks.

APIs are simpler than security protocols in one area: there are usually only two

principals – HSM and User. This eliminates the need for reasoning about multiple

instances of protocols with multiple honest and dishonest parties, and the different

interleavings of the protocol runs. Unfortunately, the effort put into reasoning about

such things in the better-developed protocol analysis tools cannot be put to a useful

purpose.

120

7.4.2 Tools Summary

There are over a dozen formal analysis tools available to the public which could be

applied to Security APIs. Most are the product of academic research programmes

and are available for free, while several are commercial products (for example,

FDR [43]). In the context of gaining assurance about Security APIs, all formal

tools do essentially the same thing – they search. There are three broad categories

of tool, based on three different technologies: theorem provers, model checkers, and

search tools themselves. Figure 7.19 lists some common tools.

• Theorem Provers search for a chain of logic which embodies all possible cases

of a problem and demonstrates that a theory holds true for each case. In

the best case they find an elegant mathematical abstraction which presents

a convincing argument of the truth of the theory over all cases within a few

lines of text. In the worst case, they enumerate each case, and demonstrate

the truth of the theory for it.

A special category of theorem provers exist – resolution theorem provers. Res-

olution is a method of generating a total order over all chains of logic that

might constitute a proof, devised by Robinson in 1965 [36]. It permits a tool

to proceed through the chains of logic in a methodical order that inexorably

leads towards finding of the correct chain, or deducing that there is no correct

chain of reasoning. Resolution initially enjoyed some success in finding proofs

for theorems that had eluded other techniques, but this was largely due to

the fact that the transformation of the proof space was difficult for humans to

visualise, so it took a while to understand what problems resolution performed

poorly at, and how to design classes of pathological cases. Eventually it be-

came clear that the class of problems resolution performed well at was simply

different from that of other provers, and not necessarily larger. It remains as

an underlying mechanism for some modern theorem provers such as SPASS

(see section 7.4.3) but is not nearly as popular as in its heyday in the 70s.

• Model Checkers also search – they explore the state space of the system which

is specified as the problem, evaluating the truth of various conditions for each

state. They continue to explore the state space hoping to exhaust it, or find

a state where the conditions do not hold. Some model checkers use mathe-

matical abstractions to reason about entire sets or branches of the state space

simultaneously, or even apply small theorems to deduce that the conditions

tested must hold over a certain portion of the space. In theory model checkers

will examine the entire state space and can give the same assurance of cor-

rectness as a theorem prover, though in practice many set problems that the

model checker cannot complete, or deliberately simplify their problem into one

which can be fully examined by the model checker.

121

• Search Tools – such as PROLOG – most openly admit that at the heart of for-

mal analysis is methodical search. These tools provide specification languages

for expressing problems that make them amenable to breadth-first or depth

first-search, and then search away, looking for a result which satisfies some end

conditions. The searches are often not expected to complete.

Theorem Provers Model Checkers Search Tools

Isabelle Spin Prolog

SPASS SMV NRL Analyser

Otter FDR

Figure 7.19: Well known formal analysis tools

So at heart, all the tools do the same thing. For those simply searching for faults, the

state-of-the-art tool that will perform best on their problem could lie in any of the

three categories. However, for those concerned with assurance of correctness, there

is an extra axis of comparison between the tools – rigour. Some formal tools are

designed with an overriding goal that any answer that they produce is truly correct;

that no special cases or peculiar conditions are missed by the tool (or any of its

optimisations) that might affect the validity of the answer. The most visible affect

of this design philosophy is in the preciseness and pedanticism of the specification

language that the tool accepts. It is often this language – the API for the tool –

which is the most important component of all.

7.4.3 Case Study: SPASS

SPASS [52] is a FOL (First Order Logic) theorem prover. It tries to automatically

construct a proof of a theory by applying axioms presented in the user’s problem

specification, and inbuilt axioms of logic. The chain of reasoning produced will

normally be much more detailed than that which would be necessary to convince

a human of the truth of a theory, and will require a degree of translation to be

human-readable.

SPASS was recommended as an appropriate and powerful tool which could reason

about monotonically increasing knowledge, and solve reachability problems in a set

of knowledge. In order to prove the existence of an attack on an API, SPASS had

to demonstrate a sequence of commands which would reveal a piece of knowledge

which was supposed to remain secret. The author represented commands in the

API as axioms stating that if certain inputs were ‘public’ (i.e. known to the user

of the device, and thus an attacker), then some manipulation of the inputs (i.e.

the output) would be public also. Variables were used in the axioms to range over

possible inputs. The simple example below shows a hypothetical command which

takes an input X, and produces an output of X encrypted with key km.

122

formula(forall([X,Y,Z],

implies(and(public(X),and(public(Y),public(Z))) ,

public(enc(enc(i(wk),Z),enc(i(enc(i(tmk),Y)),X))))

),tran_tmki_to_wki).

formula(forall([X,Y,Z],

implies(and(public(X),and(public(Y),public(Z))) ,

public(enc(enc(i(wk),Z),enc(i(enc(i(wk),Y)),X))))

),tran_cc).

Figure 7.20: Sample SPASS code encoding several VSM commands

public(X) -> public(enc(km,X))

SPASS lacks infix notation, so the above command would be written in the problem

specification as follows:

formula(forall([X],implies(public(X),public(enc(km,X))))).

Representations of API commands from models of the CCA and VSM APIs are

shown in figures 7.21 and 7.20.

SPASS performed very well at reasoning about very simple API attacks – manip-

ulating terms according to its inbuilt hunches, and could demonstrate for instance

the ‘XOR to Null Key’ and ‘Key Separation’ attacks on the Visa Security Module

(sections 7.3.1 and 7.3.2). Modelling of more complex multi-command attacks on

the CCA was more problematic. In particular, one type-casting attack (see sec-

tion 7.3.4) consisting of a sequence of three commands could not be proved to work

even given several CPU days of execution time. If the the attack was artificially

shortened by setting an easier goal – the output of the second of the three com-

mands – SPASS would almost immediately be able to confirm that this goal was

attainable. Likewise, by providing additional ‘initial knowledge’ equivalent to hav-

ing correctly chosen the first command in the sequence of the attack, SPASS would

conclude in less than a second that the final goal was attainable. The full sequence

of three commands seemed to have defeated its reasoning, and there was no way to

tell how or why.

The way in which SPASS reasoned, though highly developed and the topic of re-

search for some years by the development team at MPI in Saarbruken, remained

a mystery. The documentation provided with SPASS constitutes a brief HOWTO

guide, a list of command line switches, and a elaborate document testifying to the

rigour of the proof method used by SPASS [39]. None of this gave much illumina-

tion to the understanding of the circumstances in which SPASS would be likely to

123

\% these are the commands provided by the 4758 CCA

\% Encrypt Command

\% W is an encrypted token containing the key

\% X is the data

formula(forall([W,X],implies(and(public(W),public(X)) ,

public(enc(enc(inv(xor(data,km)),W),X))

)),Cmd_Encrypt).

\% Key Import Command

formula(forall([KEK,TYPE,KEY],implies(

and(public(TYPE) , and(public(enc(xor(KEK,TYPE),KEY)) ,

public(enc(xor(km,imp),KEK)))) ,

\% ====>

public(enc(xor(km,TYPE),KEY))

)),Cmd_Key_Import).

\% Key Part Import Command

\% W is input token

\% X is cv base

\% Y is clear xor value

formula(forall([W,X,Y],implies(and(public(kp(X)),

and(public(Y),

public(enc(xor(km,kp(X)),W)))),

\% ======>

public(enc(xor(km,X) , xor(W , Y))))

),Cmd_Key_Part_Import).

Figure 7.21: Sample SPASS code encoding several CCA commands

124

perform well, nor how to represent problems in a way most amenable to analysis

in the extremely rich specification language of first order logic. The output from

SPASS was similarly mysterious, a sample of which is shown in figure 7.22.

The biggest unanswered question remained unaddressed: how could the progress of

the tool itself whilst be monitored whilst it was running? The release version simply

sits there and thinks. It says ‘PING’ once every few seconds, to assure the user that

it is still alive, but apart from that there is no user feedback as to how the search

for a proof of the theory is proceeding.

It became clear that whilst it was appealing to harness decades of research into

search methods, optimisations, and data structures for representing state, doing

this by picking an off-the-shelf tool would be a hit-and-miss affair, and would never

be unlikely to yield interesting new results about Security APIs, unless given several

years of research.

125

--------------------------SPASS-START------------------------------

PING PING PING PING PING PING PING PING

SPASS V 1.0.0

SPASS beiseite: Proof found.

Problem: d:\mkb23\proj\formal\4758-cmd3c.spass

SPASS derived 2987 clauses, backtracked 0 clauses and kept 622 clauses.

SPASS allocated 2168 KBytes.

Here is a proof with depth 6, length 38 :

2[0:Inp] || -> public(k3)*.

5[0:Inp] || -> public(data)*.

6[0:Inp] || -> public(imp)*.

7[0:Inp] || -> public(xor(pin,data))*.

8[0:Inp] || -> equal(xor(U,z),U)**.

9[0:Inp] || -> equal(xor(U,U),z)**.

10[0:Inp] || -> public(enc(xor(kek,pin),pp))*.

11[0:Inp]public(U) || -> public(kp(U))*.

12[0:Inp] || -> equal(xor(U,V),xor(V,U))*.

13[0:Inp] || public(enc(xor(km,data),pp))*+ -> .

15[0:Inp] || -> public(enc(xor(km,kp(imp)),xor(kek,k3)))*.

17[0:Inp]public(U) public(V) || -> public(xor(V,U))*.

18[0:Inp] || -> equal(xor(xor(U,V),W),xor(U,xor(V,W)))**.

21[0:Inp]public(U) || public(kp(V)) public(enc(xor(km,kp(V)),W))+

-> public(enc(xor(km,V),xor(W,U)))*.

22[0:Inp]public(U) || public(enc(xor(km,imp),V))*+

public(enc(xor(V,U),W))* -> public(enc(xor(km,U),W))*.

23[0:Rew:12.0,15.0] || -> public(enc(xor(km,kp(imp)),xor(k3,kek)))*.

24[0:Res:22.3,13.0]public(data) || public(enc(xor(km,imp),U))*

public(enc(xor(U,data),pp))* -> .

26[0:ClR:24.0,5.0] || public(enc(xor(km,imp),U))*+

public(enc(xor(U,data),pp))* -> .

31[0:SpR:12.0,8.0] || -> equal(xor(z,U),U)**.

78[0:SpR:18.0,12.0] || -> equal(xor(U,xor(V,W)),xor(W,xor(U,V)))*.

--------------------------SPASS-STOP------------------------------

Figure 7.22: Sample output from SPASS (edited to fit on one page)

126

7.4.4 MIMsearch

The MIMsearch tool is a distributed search tool developed by the author as part of

this thesis, designed for exploring sequences of API commands to determine if they

violate security assertions about an API. It was created as an experiment rather

than as a potential rival to the other formal tools; its specific goals were as follows:

• The primary goal was to learn about the strengths and weaknesses of model

checkers (and theorem provers) through comparison with a well understood

example;

• A secondary goal was to improve the author’s ability to use the existing tools,

through better understanding of their internal working

• A third goal was to develop a tool which allowed reasonable estimates of the

complexity of models of APIs to be made, to get an idea of the bounds on

complexity of API attacks which are already known

• The final goal was functional: to try to create a tool which was powerful enough

to reason about existing financial APIs, in particular those using XOR.

MIMsearch works by manipulating trees of terms representing functions and atoms.

A command is executed by substituting the arguments into variables within a larger

term, and then simplifying the term. It has native support for encryption, and

crucially, for reasoning about the XOR function. It has a sophisticated suite of read-

outs to allow an observer to see the progress of a search for an attack, and compare

this progress against predefined subgoals when searching for a known attack.

Heuristics

Most existing tools have an array of heuristics which are applied to control the

direction of the search, and to try to produce an answer as quickly as possible. Whilst

these are indeed useful when they solve a problem rapidly, they hinder attempts to

measure problem difficulty by seeing how long a search tool takes to solve it. As one

of the goals of the MIMsearch tool was to gain a greater understanding of problem

complexity, as few heuristics as possible were used.

The only heuristic available in the current implementation is ‘likely reduction filter-

ing’. This technique filters out a subset of possible terms that could be substituted

in as an argument into one of the terms representing a transaction. The filters

are provided by the human operator along with the problem specification, and are

conventional terms with wildcards to specify ranges of structures. The reasoning

behind the heuristic is that substituting in a phrase which does not enable execu-

tion of a command to perform any simplification after all the arguments have been

substituted is not likely to correspond to a meaningful step of any attack. Whilst

this heuristic sounds pleasing, there can be no proof that it is true in all cases.

127

Problem Specification

The API is specified to MIMsearch as a series of terms containing variables rep-

resenting the arguments. The example below shows a specification for the CCA

Encrypt command. The Input lines are terms describing likely-reduction filters.

The Output line describes the function of the command; ZERO and ONE are variables

where the first and second arguments are substituted in (in this example KM and

CV_DATA are atoms specific to this API).

Cmd ‘‘Encrypt’’

Input ENC(XOR(KM,CV_DATA),ANY)

Input ANY

Output ENC(DEC(XOR(KM,CV_DATA),ZERO),ONE)

End_Cmd

After the API specification, the conditions for a successful attack are specified with a

set of “initial knowledge” – terms which are publicly available and thus known to the

attacker from the beginning. Finally, there are goals – terms which if proved to be

made public by some sequence of API commands will constitute a breach of security.

The classic initial knowledge includes one instance of every type of key normally

available in the device, in particular, a live PIN derivation key encrypted under the

relevant master key, and a PAN. The typical goal is to discover { PAN1 }PDK1 – a

particular PAN encrypted under the live PIN derivation key.

Architecture

The idea at the heart of MIMsearch is “meet-in-the-middle” – searches are performed

both forwards from the initial knowledge and backwards from the final goal, and

the resulting terms and goals stored in hash tables. The tool constantly looks for

collisions between entries of one hash table and the other, effectively square-rooting

the complexity of the search in the optimum case.

The search proceeds in a depth-first manner, with separate but interleaved threads

of the program searching forwards and backwards. The total search depth is the

sum of the forward and backward depths. For each layer of the the search, the

forward searching thread first selects a command from the API specification, then

randomly selects initial knowledge to substitute in as arguments to that command.

Each new term produced is added to the initial knowledge, hashed using collision-

resistant hash function, and then used to set a single bit in a knowledge hash table

to represent its discovery. The hash is also looked up in the goal hash table, and if

the corresponding bit in the goal table is set, an attack has been found (provided

that it is not a false collision). Once the maximum depth is reached and the final

term has been hashed and added to the knowledge table, the initial knowledge is

128

reset to that of the problem specification – the only recording of the path searched

are the entries in the knowledge and goal hash tables.

MIMsearch is unlike other tools that often continue to expand the knowledge set,

storing each term in a usable manner. This prevents wasted effort repeatedly deriv-

ing the knowledge of the same term again, but does not actually make for a more

balanced search, as it does not give any clue as to how to weight the probabilities

for selection of these terms as inputs for the next search. The MIMsearch approach

is a simple one: pick randomly and apply no heuristics to weight term selection. In

order to tackle significant size problems using this approach, a lot of brute force is

required.

Implementation

MIMsearch is written in C++ and Visual Basic, and comprises about 150 kilobytes

of source code. As it is intended to operate as a distributed system on a tightly knit

cluster of PCs, multiple programs are required. The main program can be activated

in three roles – launcher, searcher, and central node. The task of the launcher is to

receive the latest version of the searcher via a TCP stream from the central node,

and then set it running when requested. The searcher actually performs the search,

and communicates statistics and results back to the central node using TCP. The

central node collates the statistics, and then feeds to a GUI written in Visual Basic

which displays them in both graphical and textual forms.

Communication between searchers and mission control was implemented from scratch

on top of the standard Winsock API, for reasons of customisability and in mind of

future concerns about efficiency. There were a number of freely available distributed

systems packages for managing communication between nodes, but all suffered from

either unnecessary complexity in terms of simply providing a link for communicat-

ing statistics, or from potential poor efficiency and difficulty of customisation in the

context of enabling communication between nodes for hash table sharing.

129

Figure 7.23: The MIMsearch statistics display

UI Decisions

Design of the user interface was in some senses the most important part of the

project, as detailed feedback was found lacking from the other tools, and was the

key to gaining greater understanding of both problem and tool. The GUI comprises

of a statistics screen for the problem (figure 7.4.4), a control screen which monitors

the status and correct operation of the search nodes (figure 7.4.4), a watch screen

to monitor progress of the search against user defined goals (figure 7.4.4), and an

interactive command line interface for specific queries.

The main statistics screen shows most figures in powers of two, displaying the rate of

search and monitoring the filling of the knowledge and goal hash tables (figure 7.4.4).

For searches lasting more than several hours, this data serves just to assure the user

that the search is still in progress and that none of the search nodes has crashed.

There are also output screens displaying possible results from the search (when using

small hash tables this screen will display some false matches).

The control screen shows the status of the nodes, and gives a “complexity report” of

the problem in question (figure 7.4.4). This report gives an upper bound upon the

130

Figure 7.24: The MIMsearch control interface

size of search required to explore all sequences of commands up to a certain depth.

The most detailed statistics are shown on the watch display (figure 7.4.4). Each

watch entry represents a command in a user-defined sequence that represents the

attack the tool is searching to find. For each command, the display shows the number

of times the correct term as been chosen for each of its input, and the number

of times the correct output has been produced (i.e. when every input is chosen

correctly simultaneously). The rates at which correct inputs are chosen per second

is also shown. On the right hand side, two columns display the status of these terms

with respect to the hash table. As output terms are produced correctly for the first

time, they are entered into the hash table, and this is denoted by a ‘1’. This watch

display makes it possible to observe whether or not all the individual preconditions

for a command in the sequence of the attack are occurring, and observe their rates.

It can then be easily seen whether it will just be a matter of time waiting for these

conditions to coincide simultaneously by luck, or whether the tool is incapable for

some reason of finding the attack sequence.

131

Figure 7.25: The MIMsearch ‘Watch’ display

132

Chapter 10

Conclusions

This thesis has brought the design of Security APIs out into the open. Chapter 6

reveals pictures of HSMs that are a long way from being consumer devices in the

public eye (until the late 90s they were classified as munitions in the US). Chapter 7

explores the API abstractions, designs and architectures and shows what has gone

wrong with existing APIs. Under the harsh light of day we see that every HSM man-

ufacturer whose Security API has been analysed has had a vulnerability identified,

most of which have been detailed in this thesis. Some APIs have suffered catas-

trophic failures – a master key compromise on the Prism TSM200 (section 7.3.11),

and nearly every financial HSM broken by the decimalisation table attack (sec-

tion 7.3.10). We see practical implementations of theoretical attacks (section 7.3.7)

that reveal aspects of both the system attacked and the attack method itself, that

are difficult to spot in any other way.

The harsh light of day also shows us a more unpleasant truth: we are still largely

ignorant about the causes of these failures. How did the designers fail to notice the

vulnerabilities, and what new wisdom can they be given to enable them to get it

right next time? Chapter 8 discusses heuristics for API design, drawing together

established wisdom from other areas of security, in particular highlighting the ever-

applicable robustness principles of explicitness and simplicity. Yet there is little in

these heuristics that is fundamentally new and has been until now unavailable to

designers.

We could resign ourselves to ignorance, or continue to search blindly for good heuris-

tics. On the other hand, maybe the truth is that little new wisdom is actually needed

for Security API design – it is just a matter of assembling the knowledge we have,

giving it a name, and building it into the set of skills we impart to the next gen-

eration of programmers. For this approach to work, we have to get the roles and

responsibilities right.

161

10.1 Roles and Responsibilities

Security APIs aim to enforce policies on the manipulation of sensitive data. When

an API attack is performed, it is the policy in the specification document given to

the Security API that is violated. The trouble is that in real life this API-level

policy document may not exist, and there is probably not an API designer to read

it anyway. Instead, it seems that APIs are designed by someone examining the

top-level policy: what the entire system – people, computers, bits, bytes and all –

is supposed to do, and trying to conceive a computer component that bites off as

large a chunk of the problem as possible.

It is this continuing practice that could keep Security API design a hard problem,

where mistake after mistake is made. While this lack of definition in the API security

policy makes it hard to build good APIs, it also has the side-effect of creating an

identity crisis for API research.

The vulnerabilities discovered and catalogued in chapter 7 draw on a bewildering

range of principles. All of them are clearly failures of the system as a whole, but

it is hard to pick one out and declare it to be a typical API attack. A forced

decision might conclude that a type confusion attack (such as that on the VSM in

section 7.3.2) is typical. Restricting our scope of attacks to those similar to this,

we find firstly that we have only a few attacks, and secondly that they all exploit

classic failures well known and documented in security protocols literature, such as

key binding and separation of usage. This definition reduces Security API analysis

to a backwater of protocol analysis.

On the other hand, if we embrace the many and varied attacks, and declare them

all to be Security API attacks, we can only conclude that the API designer must be

the security architect – the man with the big picture in his head.

The separation of roles between security architect and Security API designer is

identified in chapter 9 as crucial in the shaping of the future of Security APIs and

our ability to tackle harder real-world problems in the future. Without the role

separation, Security API research will be stuck in a state of disarray: a messy smor-

gasbord of knowledge, techniques and wisdom plucked from other fields of security

research. It is up to the security architect to try to develop an understanding of

Security APIs, create a role for the API designer, and resolve this identity crisis.

Armed with a broad-ranging familiarity of Security API architectures, hardware se-

curity modules and procedural controls, a security architect should become able to

perceive a potential conceptual boundary at the HSM component of their design.

With encouragement he might put some of his security policy there, and there will

emerge a ‘Security API designer’ role, in which it is possible to get a design 100%

right. The policy assigned to this role must be one that benefits from the rigorous

and unforgiving execution of a computer, otherwise the HSM will be a champion

of mediocrity, and require as much human attention and supervision as another

untrustworthy human would.

162

10.2 The Security API Designer

The Security API designer may now have a clear policy to implement, but will not

necessarily have an easy job. She will need to appreciate the target device’s view

of the world – its input and output capabilities, its trusted initialisation, authorisa-

tion, identification and feedback channels, its cryptographic primitives and storage

architecture. She will then need to diligently balance simplicity and explicitness in

the design of the transaction set, obey principles of binding, key separation, and

carefully monitor information leakage of confidential data processed.

The Security API designer will have to choose whether to build her design on top of

general purpose crypto services, or alternately to grow a new API from scratch each

time. She must also be rigorous in avoiding absolutely all implementation faults, as

it is extremely hard to incorporate robustness in a design against attacks combining

both specification and implementation level faults. If the policy given to her is clear

enough, she may possibly benefit from formal methods at design time: identifying

complexity bloat, and spotting and preventing classic binding, key separation and

type confusion attacks before they happen. New formal methods may even be

developed to help quantify and set bounds on information leakage through APIs.

The Security API she designs will be part of a whole system, and whole systems

inevitably remain in a state of flux. The security architect will have chosen how

much flux to pass down. He has the option of creating a point of stability where

‘designing Security APIs right’ becomes a solved problem. Alternatively he may

pass down so much flux that uncertainty is guaranteed, and Security API designers

must resign themselves to the traditional arms race between attack and defence that

so many software products have to fight.

10.3 Closing Remark

This thesis does not have many of the answers to good API design, but it does con-

stitute a starting point for understanding Security APIs. Once this understanding is

absorbed we will really have a chance to build secure APIs and use them to change

the way we do computing, be it for better, or for worse.

163

