UNIVERSITY OF
4¥ CAMBRIDGE

Computer Laboratory

Benefits and Pitialls of
Gryntographic Hardware

Mike Bond

Computer Security Group

2002 Information Security Forum 28th January



Using cryptographic hardware to protect your business
Disasters 1n retail banking crypto hardware
Developing the threat model

Getting procedural controls right

Gaining assurance and penetration testing

Peer review and Summary



Whatis a Cryptoprocessor 2

e A tamper-resistant processor which uses cryptography
to control processing of and access to sensitive data

e Attached to a host computer e.g. web server, mainframe
which communicates requests via the Security API

e Can run software provided by manufacturer or client



Who Needs Crypto Hardware 2

e Those with high crypto throughput requirements
Example: SSL acceleration for webservers
e Those who need to enforce access policies to sensitive
information

Example: Granting signing permission at a Certification Authority

e Those who need to protect mission critical sensitive data
Example: Protecting PIN generation keys at banks



Using cryptographic hardware to
protect your husiness

e Define the security-relevant code, and load it into the
cryptoprocessor to isolate it from the rest of the system

e Keep the amount of security-relevant code to a
minimum, to make it easier to get assurance of
correctness



Two Approaches

e Write the security relevant code in-house

e Configure existing software provided by a manufacturer
or third-party to suit your needs

But who tests the design?



Disasters in Retail Banking
Grynto Hardware

e Cryptoprocessors used for securing communications
between banks, from banks to ATMs, and for storing
customer PINs and PIN generation keys

 Major API designed by VISA; several manufacturers
provide implementations e.g. Racal/Zaxus/Thales

X API specifications only available to banks and original
designers



The Visa Security Module




Null Key Attack

e Top-level crypto keys exchanged between banks 1n
several parts carried by separate couriers, which are
recombined using the exclusive-OR function

e A single operator could feed in the same part twice,
which cancels out to produce an ‘all zeroes’ test key.
PINs could be extracted 1n the clear using this key



e Bank adds a new command to the API to calculate the

offset between a new generated PIN and the customer’s
chosen PIN

e Possessing a bank account gives knowledge of one
generated PIN. Any customer PIN could be revealed by
calculating the offset between it and the known PIN



Type System Attack

* Encrypting communication keys for transfer to an
ATMs used exactly the same process as calculating a
customer PIN

e Customer PINs could be generated by re-labelling an
account number as a communications key, and using the
same encryption process



The IBM 4758 CCA




e Brute force attack (guessing) to find a single DES key 1s
extremely difficult

e But if there are many targets of equal value, the effort to
discover one of the keys 1s much less

* Affects cryptoprocessors from at least six different
manufacturers (every module examined so far)



Complex systems fail in complex ways!

Triple DES key binding design error reduces effort to
crack to twice as hard as single DES

Meet-in-the-middle attack cracks DES within 24 hours

Poor design of procedural controls mean a single user
could have all the relevant permissions

In depth feasibility study of this attack at University of
Cambridge received international publicity in Nov ‘01



Lessons Learned In Retall Banking

e Cryptoprocessors are only as secure as the software they
run, or as the people who configure them

e Both standardised and in-house developed APIs are
susceptible

 Even the massive in-house resources of a company such
as IBM has not protected against serious faults



Developing the Threat Model

How can the end user develop their crypto hardware
application to use third-party products effectively, and
be robust against attacks?

Develop your threat model (understand your attackers)

Understand the manufacturer’s perception of your threat
model (not the same as the features provided)

Choose the product where the threat models match best



Your Threat Model

What information/access 1s valuable?
Main threat from insiders or outsiders?
How much physical access would the attacker have?

How much privilege might the attacker already have?

How long would it take to discover a security breach?



Manufacturer's Threat Model

How much tamper-resistance 1s provided?
What actions can be put under dual control?
Reliance on audit to spot attacks?

What authentication tokens are available, and how are
they normally mapped to personnel?

Are those who 1nitialise the module trusted?

What information must travel via a trusted
communications path?



e Many failures occur when the end user makes false
assumptions about the guarantees an API feature

provides

e Example:

M CCA key entry procedure provides dual

control on the confidentiality of a key, but not on 1ts
integrity. Attacks involving integrity compromise must
be protected against some other way



How can the manufacturer develop their crypto
hardware to function correctly, and encourage safe
usage”?

Publish the API (not standardise)
Test API against specific threat models

Detail not just intended usage, but all assumptions
required for secure operation



Penetration Testing

The ultimate test of security with a specific threat model

But threat model 1s too specific. Will change as software
updated, personnel move, and procedures modified.

Only reveals a specific instance of a possible generic
fault.

Manufacturers faults get patched by end user.



e Lots of brainpower available in the open community
for free. Only requirement 1s mutual benefit.

e The good guys/bad guys arms race 1s inevitable.
Keeping APIs in-house 1s running the race blind.

e Crypto hardware 1s expensive and attacks generally
require some degree of physical access. In this field,
there 1s no such thing as a ‘script kiddie’.



Summanry

Physical attack i1s a serious threat, and crypto hardware can
provide resistance to it

Crypto hardware 1s susceptible to software flaws just like normal
operating systems and PCs

Crypto hardware 1s specially designed to enforce access control
policies which resist attack by individual corrupt insiders unlike
normal operating systems

As much care must be taken understanding and configuring third
party software for cryptoprocessors as in writing your own 1n-
house

The open community 1s a valuable tool, and can be used without
adopting a ‘full disclosure’ mentality.



My Research Homepage

Attack on the IBM 4758 CCA




