l|||
—

1

¥

'!

The Hazards of
security APl Design

Mike Bond

Computer Security Group

BCS Advanced Programming Group 10 January

Talk Structure

e Introduction to Security APIs

e (Case Studies

— Visa Security Module
— IBM 4758 CCA

— Prism Security Module

e Summary and Conclusions

What is a Security Processor ?

e A tamper-resistant processor which uses
cryptography to control processing of and access
to sensitive data

|

/

VDU

I/O Devs

Network

Security API

Who Needs Security Processors 2

Those who need to enforce access policies to sensitive
information

Example: Granting signing permission at a Certification Authority

Those who need to protect mission critical sensitive data
Example: Protecting PIN generation keys at banks

Those who need to protect data in hostile environments
Example: Protecting Token Vending Machines (Electricity, National Lottery etc...)

Those with high crypto throughput requirements

Example: SSL acceleration for webservers

The Simplest Cryptoprocessor

Plaintext

—

Ciphertext

{P}in

e Informal notation, common in textbooks

Sender Encryption

/ /

A—>B:{X}K11{KSIAIB}K2

AR

Concatentation
Recipient Data

Example Security APl Commands

U_>C:{A}KMI{B}KM
C->U : { A+B },y

U->C : GUESS , { ANS },,
C—>U : YES (if GUESS=ANS else NO)

U—>C:{X}K1,{K1}KM,{K2}KM
C->U : { X },

Example Key Hierachy

Owvals /f””_ e
present KEYS 3
Tepresen N QMas ter Key /)
Rectangles %\ ;}’ \::
represent TYPES P .
% -“.‘ /_,/") "‘\‘_\\
e J S—
\,. P ﬂ\.\ H_/’"' “‘\\‘
Master \ "(\ KEK MK) f\ DATA MK /.1
Ke yS | \"'-m___________d- K"““n-__ T
|
_______ A4
\\\ . !
Transport T -
=
Keys
Operational Incomin Ccutgolin Working Kevws
User
Shared Data Shared Data User Data
Data

Example Type Diagram

TYPE A

>

TYPE B

TYPE E

TYPE F

<

TYPE C

TYPE D

The Visa Security Module

USM Key Hierarchy

Master
Keys

Transport

Keys 4CMEK TMK/PIN

Op.

Keys Lokl L WK i n e
User

Data W e 0 T

TME/PIN

VSM Type Diagram

J WK

ZCMK I

(RAND)

TMK I

e

7 CMK
| WK I LP
(CLEAR) e

What's a PIN Derivation Key ?

Start with your bank account number

0000000000052218

Encrypt with PIN derivation key l

22BD467 7F1FF34AC

Chop off the ¢ (B—>1)
2213 (D—>3)

Null Key Attack

e Top-level crypto keys exchanged between banks 1n
several parts carried by separate couriers, which are
recombined using the exclusive-OR function

e A single operator could feed in the same part twice,
which cancels out to produce an ‘all zeroes’ test key.
PINs could be extracted in the clear using this key

e Bank adds a new command to the API to calculate the

offset between a new generated PIN and the customer’s
chosen PIN

e Possessing a bank account gives knowledge of one
generated PIN. Any customer PIN could be revealed by
calculating the offset between it and the known PIN

Type System Attack

* Encrypting communication keys for transfer to an
ATMs used exactly the same process as calculating a
customer PIN

e Customer PINs could be generated by re-labelling an
account number as a communications key, and using the
same encryption process

Type System Attack

TMK/PIN o WK 7 CMK
ZCMK I TMK I o WK I < LP
(RAND) [™ TC G (CLEAR) *— g TC I

Car Park Analogy

e A thief walks 1nto a car park and tries to

steal a car...

« How many keys must he try?

Car Park Analogy

The Meet in the Middie Attack

Common sense statistics

Attack multiple keys 1n parallel

Need the same plaintext under each key
Encrypt this plaintext to get a ‘test vector

Typical case: A 2°° search for one key
becomes a 2% search for 2'° keys

P

 Generate 2'° keys

* Encrypt test vectors
e Do 2% search

Cryptoprocessor’s Effort Search Machine’s Effort

> <

56 bit key space

The IBM 4798

4158 Physical Protection

Potted 1n epoxy resin

Protective tamper-sensing membrane, chemically
1dentical to potting compound

Detectors for temperature & X-Rays
“Tempest” shielding for RF emission
Low pass filters on power supply rails

Multi-stage “latching” boot sequence

= STATE OF THE ART PROTECTION!

4798 GCGA Software

IBM’s main financial cryptography product
In service since 1970’s
Used by PCs, Mainframes, ATMs ...

Available for NT/2000, OS/2 , AIX ...

Large and complex: roughly 150
commands, plus parameter space

 Fancy name for ‘type’

* An encrypted key token looks like this :

T
-
1

—“Km®@TYPE (

K.

L]

Y), TYP:

L]

4158 Key Hierarchy

Master I S r J—
= o) Cwem me
FMxIMP EMxIMP KMXMAC‘;}\ FMxzPIN
'\——.____,_4-—'// _,_4-—'/ \\"“—‘——.__.—— —
Transport
Keys IMPORTER EXPORTER
A
s
o
— — — — — — — | — — — — — — — — — | — — — — — — e — — — | — — — — — —
A
E " r L
Op. MAC PIN DAT MAC PIN DAT MAC PIN DAT
Key ’
User MAC I PIN I DAL ol MAC I PIN I DAT I MAC I PIN I DAT
Data

Key Part Import

Thee key-part holders, each have KPA, KPC, KPC

Finalkey Kis KPA @ KPB @ KPC

All must collude to find K, but any one key-part
holder can choose difference between desired K
and actual value.

41598 Key Import Attack

KEK]1 = KORIG
KEK2 = KORIG @ (old CV © new CV)

Normally ...

Dxer1®o1d cv (EKEKleBold_cv (KEY)) = KEY
Attack ...

DxEk2@new cv (EKEKleBold_cv (KEY)) = KEY

E. (D

K K

4138 Key Binding Attack

(E

k (

KEY

X

Y

)

E, (KEY)

Single Length Key

Double Length ‘Replicate”
Double Length

— ——

B

4758 I/E Loop Attack

Another 4758 Our 4758

// now import the modified external token

void attack_typecast (void)

{ Data_Key_TImport(A_RETRES , A_ED ,
// permissions reqd: extpinkeymod ,
// key part combine kekmod

’

// data key import , encipher opdatakey) ;

DEFINE_RRED if (check ("Data_Key_Import of external token",RETRES))

return;

// inputs

UCHAR kekmod[65]; // opdatakey now contains a pin key imported as a data key

UCHAR extpinkey[65];

fill_null (init_vector);

UCHAR extpinkeymod[65]; fill_null (chaining_vector);

UCHAR opdatakey[65];

UCHAR tempdatakey[65]; // do some enciphering

//UCHAR new_control_vector[16]; Encipher (A_RETRES , A_ED ,

opdatakey ,
UCHAR init_vector[8]; I_LONG (8)

’

UCHAR chaining_vector[18]; account_number ,

UCHAR account_number[8]; // put the account number here init_vector ,

UCHAR pin[8]; I_LONG(0) ,
NULL ,

// rebuild the extpinkey token to have a DATA control vector "o,

generate_data_key (tempdatakey) ; chaining_vector ,

pin);
bind_new_cv_to_external_token (extpinkeymod, extpinkey, tempdatakey) ;
if (check ("Attack enciphering of account number",RETRES))

return;

Publicity for 4758 CCA Attacks

IBM 1nitially feigned interest in attacks, and ignored
repeated enquiries 1n first six months

We prepared a full implementation of the attack, including
special hardware to prove that it was practical, not just
theoretical

We warned IBM, then publicised the attack on Newsnight
and in FT on 8%/9" November

Result: international publicity, 2 x television, 5 x radio,
press in UK & USA. Reuters gave internet coverage in
most languages...

Website gets ~400 hits from within ibm.com within 48 hrs,
They give me a beta version of the patch by December

to be continued...

The PRISM Security Module

Prism Real-Lite Application

2 million South African pre-payment electricity
meters credited not with coins but with magic
numbers bought from vending machines at local
shops

Vending machines use Prism security module to
protect vending keys from shop owners/burgalars

Discovering a vending key allows unlimited token
manufacture = free electricity

Vending keys stored in a hierarchy, with manually
loaded master key at top

Master Key Entry

When vending machine first initialised...

e Three ‘trusted” security officers arrive with key
 Master key Km 1is a two-key triple DES key

e Each half loaded in three parts, which are
exclusive-ored together

e Each security officer loads one part of each key
e Check digits returned after each load

Check Digits = { 0 }..

Example Key Entry

Security Officer 1
SM?IK 36 OSFSE3983E3BDEZ26

SM!TK 00 916BA78B3F290101
SM?IK 87 E92F6/BFEADEF91D9

SM!ITK 00 OD7604EBA1O0ACT/F3

Security Officer 2 (... n)
SM?AK 86 FDZ29DA10029726DC

SM!IAK 00 EDB2812D704CDC34

SM?AK 87 48CCA9T/5F4B2C8AS

SM!IAK 00 OB52ED2705DDFOE4

The Faults

e Check digits are given on each half of the master
key, so can attack each half separately

e After master key 1s loaded, anyone can continue to
exclusive-or in new parts to the master key

e Can make a large set of related keys; discovery of
any one of these keys lets us work back to find the
master key

Making the Related Key Set

For T = 0000000000000001
to 00000000000 1FFFEF

{
SM?AK 87 I xor (I-1)

SM!IAK 00 (result)

store the pair (I , result)

}

Result : 2 x V2 MB files of test vectors

Searching for a Related Key

Used FPGA based hardware search machine

Hardware DES 1implementation 1s ~235 times faster
than the best software implementations

Software attack with single PC would take several
months

We tried with 6 PCs (~£4500), took 3 12 days

Altera makes FPGA Evaluation Board with 200K
gate FPGA and all software required for $995

$1000 Excalibur kit (Altera 20K200)
— But cost ~ $100 for just the chip ?

16MHz pipeline (half speed at present)

224 keys/second
— 40 bit problems = 18 hours
— 56 bit DES = 135 years ($1M = 5..50 days)

However.. 1t does 64K keys in parallel

The Big Picture

: External
PC Client RAM €
1 DES Pipeline
UART
| 16-Bit 10 o> Instruction PER
Microprocessor Decoder

Security API design 1s hard to get right

Multi-purpose APIs are the hardest to get right

— Dangerous
— Backwards

feature interactions
compatibility / legacy system support 1s hard

The 1ntegrity of cryptographic keys 1s just as important
as the confidentiality
Single DES 1s dead, and Triple DES must be

implementec
Security AP]

| with great care
[design requires a combination of protocol

analysis, cryptology and threat modelling. It looks set to
be a challenging and exciting research field in the future

Papers, Links & Resources

http://www.cl.cam.ac.uk/~mkb23/research.html

Attacks on IBM 4758 CCA & Hardware Cracker
http://www.cl.cam.ac.uk/~rnc1/descrack

Mike.Bond @cl.cam.ac.uk

